Лекции по системному анализу в чрезвычайных ситуациях. Часть 4

1.1.2. Второй этап.

Особенности протекания второго этапа рассматриваемого процесса, т.е. распространение опасных потоков, обусловлены как перечисленными только что факторами, так и спецификой пространства, заполняемого веществом или находящегося между источником энергии и подверженным ее воздействию объектом. Чаще всего это пространство может быть трехмерным (атмосфера, водоем, почва), иметь заполнение — неоднородное или однородное, неподвижное или подвижное (несущую среду), обладать фактически бесконечными размерами или ограничиваться другой средой, способной поглощать или отражать потоки энергии или вещества.

С учетом данного обстоятельства возможны различные сочетания существенных для процессов энергомассообмена и потокообразования факторов, приводящих к различным сценариям, начиная с растекания жидких веществ по твердой поверхности и завершая заполнением всего пространства смесью аэрозоли, газа и/или жидкости.

Рассмотрим, например, сценарии, связанные с распространением химических веществ в воздушной среде. Сложность модели здесь может быть различна, и это во многом зависит от принятых допущений. В частности, возможны следующие варианты постановки задачи.

1. Принимается допущение о неподвижности атмосферы. В этом случае можно выделить основные особенности распространения газообразных веществ. Они проявляются обычно в образовании либо облака (для залпового выброса газов) либо шлейфа (для их непрерывного истечения), которые затем ведут себя соответственно следующим образом:

а) стелятся над поверхностью или постепенно приближаются к ней (тяжелые газы);

б) касаются земли или распространяются параллельно поверхности (газы, плотность которых близка к плотности воздуха;

в) поднимаются в виде гриба или расширяющегося конуса, поперечные сечения которых называются «термиками» («термик» — интенсивно перемешиваемое образование с поднимающими легкими потоками внутри и опускающимися из-за охлаждения более плотными окружающими газами (легкие газы).

2. Учитывается подвижность атмосферы как несущей среды и характер подстилающей ее поверхности.

Подвижность атмосферы характеризуется скоростью ветра ux , скоростью переноса vх, вертикальной устойчивостью.

Характер подстилающей поверхности обусловлен рельефом местности, шероховатостью поверхности.

Этих факторы слегка видоизменяют процесс распространения облака. Обычно это приводит к дрейфу шлейфа или облака атмосфере с постепенным изменением их высоты и формы примерно так, как это показано на рис.1. Причины тому — действие архимедовых и сил, а также размыв поверхности этих образований за счет трения о поверхность земли и турбулентного рассеяния газов в процессе так называемой атмосферной диффузии (турбулентная диффузия).

Величина трения о земную поверхность обычно зависит от размеров зданий, оврагов, деревьев, кустов и других естественных шероховатостей.

clip_image002[8]

а б в

Рис. 1. Распространение облака АХОВ в атмосфере

а — легкий газ, б — газ равный по плотности воздуху, в — тяжелый газ

Влияние атмосферы определяется направлением и скоростью циркулирующих в ней потоков, в том числе потока тепловой энергии. Для учета такого влияния при математическом моделировании обычно используют шесть классов устойчивости атмосферы:

А — сильно неустойчивая с преобладанием конвекции,

В — умеренно неустойчивая,

С — слабо неустойчивая атмосфера,

D — нейтральная стратификация, т.е. изотермия,

Е — слабо устойчивая с инверсией,

F — умеренно устойчивая.

Ниже, в табл. 1 приведена такая классификация в зависимости от времени суток, скорости ветра, облачности и солнечной радиации.

Табл. 1. Классы устойчивости атмосферы по Ф. Пэсквиллу

Скорость ветра u на высоте 10 м,

м/с

День

Ночь

Инсоляция

Облачность

интенсивная

умеренная

слабая

тонкая

отсутствует

u £ 2

A

A — B

B

2 < u £ 3

A — B

B

C

E

F

3 < u £ 5

B

B — C

C

D

E

5 < u £ 6

C

C — D

D

D

D

u > 6

C

C

D

D

D

Приведенная классификация используется затем для определения ряда эмпирических коэффициентов и зависимостей, существенно влияющих на рассеяние вредного вещества в атмосфере.

В качестве других исходных данных применяются различные сценарии и факторы, а также количественные характеристики, полученные при исследовании первого этапа процесса формирования поражающих факторов.

Вы здесь: Главная БЖД и Охрана труда Чрезвычайные ситуации Лекции по системному анализу в чрезвычайных ситуациях. Часть 4