Лекции по системному анализу в чрезвычайных ситуациях. Часть 4
- Лекции по системному анализу в чрезвычайных ситуациях. Часть 4
- 1.1. Потоковые графы (графы состояний)
- 2. Моделирование с помощью орграфов
- 2.2. Взвешенные графы
- 2.3. Импульсные процессы в орграфах
- 2.4. Устойчивость и равновесие орграфа
- 2.5. Функциональные и гибридные и динамические орграфы
- 2.6. Орграфы с временными задержками
- 2.7. Управленческие решения при моделировании на орграфах
- Тема 2.2.5. Функциональные сети
- 2.2.52. Характеристики символов, используемых в диаграммах
- 2.2.5.
- ТЕМА 2.2.6. Сети Петри
- 2.2.6.2. Конечные разметки сети
- 2.2.6.3. Ограниченность сети Петри
- 2.2.6.4. Моделирование с помощью сетей Петри
- Тема 2.2.7. Основные принципы системного анализа и моделирования ущерба от техногенных аварий и катастроф
- 1.1.1. Первый этап
- 1.1.2. Второй этап.
- 1.1.3. Третий этап.
- 1.1.4. Четвертый этап
- 2. Классификация и анализ известных моделей и методов прогнозирования техногенного ущерба
- 2.2.7.2. Системные свойства новой реальности и риск
- 2.2.7.
- 2.2.7.
- Уровни управления риском
- Государственный уровень.
- Регионально‑отраслевой уровень.
- Сценарно‑объектовый уровень.
- Концептуальные модели риска
- 4.3. Анализ и управление профессиональным риском
Одна из основных проблем в теории сетей Петри — задача о конечности функционирования сети (о достижении тупиковой разметки, “смертельные объятия” и т.д.).
Суть проблемы состоит в ответе на вопрос для данной конкретной сети — существует ли такая последовательность срабатывания переходов, которая приводит сеть к тупиковой разметке (т.е. разметке, при которой ни один переход не может сработать)?
Если обратиться к рис.3 — очевидно, что последовательность P2,P2,P2,P2 (т.е. четыре подряд срабатывания перехода P2) делают дальнейшее срабатывание любого перехода в данной сети — невозможным. Желающие могут найти и другие последовательности срабатывания переходов, приводящих к такому результату.
Более того, анализ сети позволяет утверждать, что эта сеть всегда приходит к тупиковой разметке. Это математическое утверждение (теорема!) может быть строго доказано.
Заметим, что хотя рассматриваемая сеть обязательно останавливается, т.е. достигает тупиковой разметки, но сами эти тупиковые разметки могут быть различны.
Например, утверждение: “ сеть на рис.3 всегда останавливается, когда все фишки собраны в позиции V2” — справедливо.
А похожее утверждение: “ сеть на рис.3 всегда останавливается, причем все фишки собраны в позиции V2” — не верно.
Свойство достижения конечной разметки присуще далеко не всем сетям. Например, на рис.4 приведен пример сети всегда приходящей к тупиковой разметке, на рис.5 — сеть никогда не “попадает в тупик”, на рис. 6 — сеть, которая может остановиться, а может и нет.