Лекции по системному анализу в чрезвычайных ситуациях. Часть 4
- Лекции по системному анализу в чрезвычайных ситуациях. Часть 4
- 1.1. Потоковые графы (графы состояний)
- 2. Моделирование с помощью орграфов
- 2.2. Взвешенные графы
- 2.3. Импульсные процессы в орграфах
- 2.4. Устойчивость и равновесие орграфа
- 2.5. Функциональные и гибридные и динамические орграфы
- 2.6. Орграфы с временными задержками
- 2.7. Управленческие решения при моделировании на орграфах
- Тема 2.2.5. Функциональные сети
- 2.2.52. Характеристики символов, используемых в диаграммах
- 2.2.5.
- ТЕМА 2.2.6. Сети Петри
- 2.2.6.2. Конечные разметки сети
- 2.2.6.3. Ограниченность сети Петри
- 2.2.6.4. Моделирование с помощью сетей Петри
- Тема 2.2.7. Основные принципы системного анализа и моделирования ущерба от техногенных аварий и катастроф
- 1.1.1. Первый этап
- 1.1.2. Второй этап.
- 1.1.3. Третий этап.
- 1.1.4. Четвертый этап
- 2. Классификация и анализ известных моделей и методов прогнозирования техногенного ущерба
- 2.2.7.2. Системные свойства новой реальности и риск
- 2.2.7.
- 2.2.7.
- Уровни управления риском
- Государственный уровень.
- Регионально‑отраслевой уровень.
- Сценарно‑объектовый уровень.
- Концептуальные модели риска
- 4.3. Анализ и управление профессиональным риском
После рассмотрения с помощью причинно-следственных диаграмм, деревьев отказов, функциональных сетей обстоятельств и условий возникновения происшествий в техносфере представляется логичным приступить к системному анализу и моделированию собственно тех процессов, которые приводят к появлению соответствующего ущерба. При этом основной акцент целесообразно сделать на исследовании закономерностей высвобождения, распространения, трансформации и разрушительного воздействия аварийных потоков энергии и вещества.
1. Основные этапы и составляющие формирования техногенного ущербаСогласно статистике современных аварий, катастроф и несчастных случаев с людьми наибольший техногенный ущерб людским, материальным и природным ресурсам наносится пожарами, транспортными происшествиями, взрывами и разрушениями зданий. Большинство же техногенных происшествий обусловлено неконтролируемым высвобождением кинетической энергии движущихся машин и механизмов, а также потенциальной или химической энергией, накопленной в сосудах высокого давления и топливовоздушных смесях, конденсированных ВВ, ядовитых жидкостях и других вредных веществах.
К основным поражающим факторам аварий и техногенных катастроф обычно относят:
а) термический: к нему относят тепловое излучение, «удар» пламенем или криогенным веществом; воздействие термического фактора составляет 56 % от причин разрушительного воздействия;
б) бризантно-фугасный: реализует дробящее, метательное или осколочное воздействие движущихся тел, включая продукты взрыва — составляет около 29%,
в) агрессивные или токсичные свойства вредных веществ или АХОВ — они наносят около 10 % ущерба.
Конечной целью системного анализа и моделирования процесса распространения энергии и вредного вещества служит построение полей пространственно-временного распределения плотности их потоков или концентрации. |
Детальное рассмотрение техногенных происшествий следует проводить после декомпозиции всего процесса формирования поражающих факторов, наносящих ущерб человеческим и материальным ресурсам. Здесь уместна декомпозиция по формальной модели «жизненный цикл».
Можно выделить следующие четыре этапа или стадии:
1) высвобождение накопленной в человеко-машинной системе энергии или запасов вредного вещества вследствие возникшей там аварии;
2) неконтролируемое распространение (трансляция) их потоков в новую для них среду и перемещение в ней;
3) их дальнейшее физико-химическое превращение (трансформация) с дополнительным энерговыделением и переходом в новое агрегатное или фазовое состояние;
4) разрушительное воздействие (адсорбция) первичных потоков и/или наведенных ими поражающих факторов на не защищенные от них объекты.
Рассмотрим эти этапы подробнее.