Электричество и магнетизм. Часть 2
- Электричество и магнетизм. Часть 2
- 2.2. Закон Ома для однородного участка цепи. Сопротивление проводников.
- 2.3. Дифференциальная форма закона Ома.
- 2.4. Сторонние силы. ЭДС источника тока. Закон Ома для неоднородного участка цепи и для замкнутой цепи.
- 2.5. Напряжение на зажимах источника тока.
- 2.6. Разветвленные цепи. Правила Кирхгофа.
- . 2.7. Соединение сопротивлений.
- 2.8. Работа и мощность постоянного тока. Закон Джоуля — Ленца.
- 2.9. КПД источника тока.
- 2.10. Природа носителей тока в металлах.
- 2.11. Основные положения классической электронной теории проводимости металлов Друде — Лоренца.
- 2.12. Вывод законов Ома, Джоуля-Ленца и Видемана-Франца на основе теории Друде-Лоренца.
- 2.13. Затруднения классической теории электропроводности металлов. Сверхпроводимость металлов.
- 2.14. Электрический ток в электролитах. Законы электролиза Фарадея.
- 2.15. Электропроводность газов. Основные виды газового разряда. Плазма.
- 2.16. Электрический ток в вакууме. Работа выхода электрона из металла.
- 3.1. Взаимодействие проводников с током. Закон Ампера.
- 3.2. Закон Био-Савара-Лапласа. Принцип суперпозиции магнитных полей.
- 3.3. Примеры вычисления магнитных полей с помощью закона Био-Савара-Лапласа.
- 3.4. Магнитный момент тока.
- 3.5. Магнитное поле на оси кругового витка с током.
- 3.6. Момент сил, действующих на контур с током в магнитном поле.
- 3.7. Энергия контура с током в магнитном поле.
- 3.8. Контур с током в неоднородном магнитном поле.
- 3.9. Работа, совершаемая при перемещении контура с током в магнитном поле.
- 3.10. Поток вектора магнитной индукции. Теорема Гаусса в магнитостатике
- 3.11. Теорема о циркуляции магнитного поля. Магнитное напряжение.
- 3.12. Магнитное поле соленоида и тороида.
2.4. Сторонние силы. ЭДС источника тока. Закон Ома для неоднородного участка цепи и для замкнутой цепи.
Для протекания электрического тока в проводнике необходимо, чтобы на его концах поддерживалась разность потенциалов. Очевидно, для этой цели не может быть использован заряженный конденсатор. Действительно, если включить в цепь проводника заряженный конденсатор (рис.5.9) и замкнуть цепь, то под действием сил электростатического поля заряды придут в движение, возникнет кратковременный ток, после чего установится равновесное распределение зарядов, при котором потенциалы концов проводника выравниваются и ток прекращается. Другими словами, электростатическое поле конденсатора не может осуществить постоянную циркуляцию зарядов в цепи (то есть электрический ток), что является следствием потенциальности электростатического поля — равенства нулю работы сил электростатического поля по замкнутому контуру. Таким образом, для поддержания постоянного тока в замкнутой цепи необходимо действие сторонних сил неэлектростатического происхождения и не являющихся потенциальными силами.
Кратковременный ток.
Рис.5.9. Заряженный конденсатор не может служить источником постоянного тока.
Эти силы могут быть обусловлены химическими процессами, диффузией носителей заряда через границу двух разнородных проводников, магнитными полями, другими причинами.
Сторонние силы можно охарактеризовать работой, которую они совершают по перемещению зарядов в замкнутой цепи. Величина, равная работе сторонних сил Аст, отнесенная к единице положительного заряда, называется электродвижущей силой (ЭДС). Единицей измерения ЭДС в СИ (как и напряжения) является В (Вольт).
Работа сторонних сил по замкнутому контуру не равна нулю (рис.5.10):
Рис.5.10. Источник электродвижущей силы в замкнутой цепи.
Участок цепи, содержащий источник ЭДС, называется неоднородным (рис.5.11). Всякий источник ЭДС характеризуется величиной ЭДС ε и внутренним сопротивлением r.
- напряжение на концах участка цепи.
Рис.5.11. Неоднородный участок цепи.
Закон Ома для неоднородного участка цепи имеет вид:
При соединении концов неоднородного участка цепи идеальным проводником образуется замкнутая цепь, в которойпотенциалы φ1 и φ2 выравниваются и мы приходим к закону Ома для замкнутой (или полной) цепи:
Если сопротивление внешней цепи , то имеем случай короткого замыкания. В этом случае в цепи течет максимальный ток:
При имеем разомкнутую цепь. В этом случае ток в цепи равен нулю: