Электричество и магнетизм. Часть 2
- Электричество и магнетизм. Часть 2
- 2.2. Закон Ома для однородного участка цепи. Сопротивление проводников.
- 2.3. Дифференциальная форма закона Ома.
- 2.4. Сторонние силы. ЭДС источника тока. Закон Ома для неоднородного участка цепи и для замкнутой цепи.
- 2.5. Напряжение на зажимах источника тока.
- 2.6. Разветвленные цепи. Правила Кирхгофа.
- . 2.7. Соединение сопротивлений.
- 2.8. Работа и мощность постоянного тока. Закон Джоуля — Ленца.
- 2.9. КПД источника тока.
- 2.10. Природа носителей тока в металлах.
- 2.11. Основные положения классической электронной теории проводимости металлов Друде — Лоренца.
- 2.12. Вывод законов Ома, Джоуля-Ленца и Видемана-Франца на основе теории Друде-Лоренца.
- 2.13. Затруднения классической теории электропроводности металлов. Сверхпроводимость металлов.
- 2.14. Электрический ток в электролитах. Законы электролиза Фарадея.
- 2.15. Электропроводность газов. Основные виды газового разряда. Плазма.
- 2.16. Электрический ток в вакууме. Работа выхода электрона из металла.
- 3.1. Взаимодействие проводников с током. Закон Ампера.
- 3.2. Закон Био-Савара-Лапласа. Принцип суперпозиции магнитных полей.
- 3.3. Примеры вычисления магнитных полей с помощью закона Био-Савара-Лапласа.
- 3.4. Магнитный момент тока.
- 3.5. Магнитное поле на оси кругового витка с током.
- 3.6. Момент сил, действующих на контур с током в магнитном поле.
- 3.7. Энергия контура с током в магнитном поле.
- 3.8. Контур с током в неоднородном магнитном поле.
- 3.9. Работа, совершаемая при перемещении контура с током в магнитном поле.
- 3.10. Поток вектора магнитной индукции. Теорема Гаусса в магнитостатике
- 3.11. Теорема о циркуляции магнитного поля. Магнитное напряжение.
- 3.12. Магнитное поле соленоида и тороида.
Лекция 9
Контур с током в магнитном поле.
3.4. Магнитный момент тока.
Мо многих случаях приходится иметь дело с замкнутыми токами, размеры которых малы по сравнению с расстоянием от них до точки наблюдения. Такие токи будем называть элементарными. Пример подобных токов мы имеем во всех атомах — это движущиеся по замкнутым орбитам электроны. Эти токи, вследствие малости атомных размеров можно считать элементарными.
Рассмотрим плоский круговой виток с током радиуса R (рис.9.1). Характеристиками витка являются: сила тока I, текущего по витку, площадь S, обтекаемая током и ориентация витка в пространстве, определяемая направлением единичного вектора нормали к плоскости витка. Совокупность всех этих трех характеристик образует магнитный момент витка с током, который по определению равен:
|

Рис.9.1. Круговой виток с током.
В теории магнетизма магнитный момент кругового витка с током играет такую же важную роль, как и электрический дипольный момент в теории электричества.