Электричество и магнетизм. Часть 2
- Электричество и магнетизм. Часть 2
- 2.2. Закон Ома для однородного участка цепи. Сопротивление проводников.
- 2.3. Дифференциальная форма закона Ома.
- 2.4. Сторонние силы. ЭДС источника тока. Закон Ома для неоднородного участка цепи и для замкнутой цепи.
- 2.5. Напряжение на зажимах источника тока.
- 2.6. Разветвленные цепи. Правила Кирхгофа.
- . 2.7. Соединение сопротивлений.
- 2.8. Работа и мощность постоянного тока. Закон Джоуля — Ленца.
- 2.9. КПД источника тока.
- 2.10. Природа носителей тока в металлах.
- 2.11. Основные положения классической электронной теории проводимости металлов Друде — Лоренца.
- 2.12. Вывод законов Ома, Джоуля-Ленца и Видемана-Франца на основе теории Друде-Лоренца.
- 2.13. Затруднения классической теории электропроводности металлов. Сверхпроводимость металлов.
- 2.14. Электрический ток в электролитах. Законы электролиза Фарадея.
- 2.15. Электропроводность газов. Основные виды газового разряда. Плазма.
- 2.16. Электрический ток в вакууме. Работа выхода электрона из металла.
- 3.1. Взаимодействие проводников с током. Закон Ампера.
- 3.2. Закон Био-Савара-Лапласа. Принцип суперпозиции магнитных полей.
- 3.3. Примеры вычисления магнитных полей с помощью закона Био-Савара-Лапласа.
- 3.4. Магнитный момент тока.
- 3.5. Магнитное поле на оси кругового витка с током.
- 3.6. Момент сил, действующих на контур с током в магнитном поле.
- 3.7. Энергия контура с током в магнитном поле.
- 3.8. Контур с током в неоднородном магнитном поле.
- 3.9. Работа, совершаемая при перемещении контура с током в магнитном поле.
- 3.10. Поток вектора магнитной индукции. Теорема Гаусса в магнитостатике
- 3.11. Теорема о циркуляции магнитного поля. Магнитное напряжение.
- 3.12. Магнитное поле соленоида и тороида.
3.11. Теорема о циркуляции магнитного поля. Магнитное напряжение.
Циркуляцией магнитного поля вдоль замкнутого контура l называется интеграл:
,
где — проекция вектора на направление касательной к линии контура в данной точке.
Соответствующий интеграл для электрического поля в электростатике, как мы знаем, равен нулю, что отражает свойство потенциальности электростатического поля:
.
Магнитное поле не является потенциальным, оно, как было показано выше, является соленоидальным. Поэтому следует ожидать, что циркуляция магнитного поля вдоль замкнутого контура в общем случае отлична от нуля. Чтобы найти ее величину, выполним сначала некоторые вспомогательные действия.
Как известно, интеграл, взятый между двумя любыми точками 1 и 2 в электрическом поле, есть электрическое напряжение между этими точками:
.
По аналогии мы можем ввести понятие «магнитного напряжения», определив его как:
.
Вычислим магнитное напряжение между двумя точками 1 и 2, взятыми на силовой линии магнитного поля прямолинейного проводника с током (рис.10.3).
Рис.10.3. К вычислению магнитного напряжения проводника с током.
Напряженность магнитного поля на расстоянии r от оси проводника определяется по формуле:
.
Тогда:
,
где — длина дуги окружности, вдоль которой производится интегрирование.
При обходе по всей силовой линии (окружности) угол и, следовательно:
.
Мы видим, что при обходе по замкнутому контуру, охватывающему проводник с током, циркуляция магнитного поля оказывается отличной от нуля и численно равной силе тока, текущего в проводнике; также она не зависит от формы и размеров выбранного контура.
Если контур, охватывающий проводник, не является плоским, то при перемещении вдоль контура радиальный отрезок, соединяющий проводник с текущей точкой контура, будет не только поворачиваться вокруг проводника, но и перемещаться вдоль него. Однако суммарный угол поворота проекции этого отрезка на плоскость, перпендикулярную току, все равно будет равен 2π, то есть результат останется тем же.
В том случае, когда контур не охватывает проводник с током, радиальный отрезок при обходе контура будет поворачиваться сначала в одну сторону, а потом в другую. При этом суммарный угол поворота (с учетом знака направления обхода) будет равен нулю.
В общем случае, если контур охватывает несколько проводников с током (рис.10.4),
Рис.10.4. К формулировке теоремы о циркуляции магнитного поля.
то обобщением полученного результата будет написание выражения, составляющего содержание теоремы о циркуляции магнитного поля:
,
где в правой части стоит алгебраическая сумма всех токов, охваченных данным контуром, причем ток считается положительным, если его направление связано с направлением обхода контура правилом правого винта и отрицательным, если ток имеет противоположное направление.