Электричество и магнетизм. Часть 2
- Электричество и магнетизм. Часть 2
- 2.2. Закон Ома для однородного участка цепи. Сопротивление проводников.
- 2.3. Дифференциальная форма закона Ома.
- 2.4. Сторонние силы. ЭДС источника тока. Закон Ома для неоднородного участка цепи и для замкнутой цепи.
- 2.5. Напряжение на зажимах источника тока.
- 2.6. Разветвленные цепи. Правила Кирхгофа.
- . 2.7. Соединение сопротивлений.
- 2.8. Работа и мощность постоянного тока. Закон Джоуля — Ленца.
- 2.9. КПД источника тока.
- 2.10. Природа носителей тока в металлах.
- 2.11. Основные положения классической электронной теории проводимости металлов Друде — Лоренца.
- 2.12. Вывод законов Ома, Джоуля-Ленца и Видемана-Франца на основе теории Друде-Лоренца.
- 2.13. Затруднения классической теории электропроводности металлов. Сверхпроводимость металлов.
- 2.14. Электрический ток в электролитах. Законы электролиза Фарадея.
- 2.15. Электропроводность газов. Основные виды газового разряда. Плазма.
- 2.16. Электрический ток в вакууме. Работа выхода электрона из металла.
- 3.1. Взаимодействие проводников с током. Закон Ампера.
- 3.2. Закон Био-Савара-Лапласа. Принцип суперпозиции магнитных полей.
- 3.3. Примеры вычисления магнитных полей с помощью закона Био-Савара-Лапласа.
- 3.4. Магнитный момент тока.
- 3.5. Магнитное поле на оси кругового витка с током.
- 3.6. Момент сил, действующих на контур с током в магнитном поле.
- 3.7. Энергия контура с током в магнитном поле.
- 3.8. Контур с током в неоднородном магнитном поле.
- 3.9. Работа, совершаемая при перемещении контура с током в магнитном поле.
- 3.10. Поток вектора магнитной индукции. Теорема Гаусса в магнитостатике
- 3.11. Теорема о циркуляции магнитного поля. Магнитное напряжение.
- 3.12. Магнитное поле соленоида и тороида.
3.12. Магнитное поле соленоида и тороида.
Применим полученные результаты для нахождения напряженности магнитного поля на оси прямого длинного соленоида и тороида.
1) Магнитное поле на оси прямого длинного соленоида.
Соленоидпредставляет собой катушку, намотанную на цилиндрический каркас. Если длина соленоида много больше его диаметра, то такой соленоид называют длинным (в отличие от короткой катушки с противоположным соотношением размеров). Магнитное поле максимально внутри соленоида и направлено вдоль его оси. Вблизи оси соленоида магнитное поле можно считать однородным.
Для нахождения напряженности магнитного поля на оси прямого длинного соленоида с помощью теоремы о циркуляции магнитного поля, выберем контур интегрирования, как показано на рис.10.5.
Рис.10.5. К расчету напряженности магнитного поля на оси соленоида.
На участке 1-2 направление магнитного поля совпадает с направлением обхода контура, а его напряженность постоянна в силу однородности поля. На участках 2-3 и 4-1 вне соленоида проекция магнитного поля на направление обхода равна нулю. Наконец, на участке 3-4, удаленном достаточно далеко от соленоида, можно считать, что магнитное поле отсутствует.
С учетом сказанного имеем:
,
где
, , , .
Но согласно теореме о магнитном напряжении этот интеграл равен , где N — число витков соленоида, сцепленных с контуром интегрирования. Следовательно
,
откуда находим: ,
где через обозначено число витков на единицу длины соленоида.
2) Магнитное поле на оси тороида.
Тороидпредставляет собой катушку, намотанную на каркас, имеющий форму тора. Магнитное поле тороида целиком сосредоточено внутри него и является неоднородным. Максимальное значение напряженность магнитного поля имеет на оси тороида.
Рис.10.6. К расчету напряженности магнитного поля на оси тороида.
Для нахождения напряженности магнитного поля вблизи оси тороида применим теорему о циркуляции магнитного поля, выбрав контур интегрирования, как показано на рис.10.6.
Имеем:
.
С другой стороны, этот интеграл равен , откуда следует, что
.
- << Назад
- Вперёд