Электричество и магнетизм. Часть 1
- Электричество и магнетизм. Часть 1
- 1.2. Взаимодействие электрических зарядов. Закон Кулона
- 1.3. Электрическое поле. Напряженность электрического поля
- 1.4. Поток вектора напряженности электрического поля. Теорема Гаусса.
- 1.5. Применение теоремы Гаусса для расчета электрических полей.
- 1.6. Работа сил поля по перемещению заряда. Потенциал и разность потенциалов электрического поля.
- 1.7. Связь между напряженностью и потенциалом электрического поля. Градиент потенциала.
- 1.8. Эквипотенциальные линии и поверхности и их свойства.
- 1.9. Потенциалы простейших электрических полей.
- 1.10. Поляризация диэлектриков. Свободные и связанные заряды. Основные виды поляризации диэлектриков.
- 1.11. Вектор поляризации и вектор электрической индукции.
- 1.12. Напряженность электрического поля в диэлектрике.
- 1.13. Основные теоремы электростатики в интегральной и дифференциальной форме.
- 1.14. Граничные условия для электрического поля.
- 1.15. Равновесное распределение зарядов на проводниках.
- 1.16. Электроемкость проводников. Конденсаторы.
- 1.17. Вычисление емкости простых конденсаторов.
- 1.18. Соединение конденсаторов.
- 1.19. Энергия системы неподвижных точечных зарядов.
- 1.20. Энергия заряженного проводника и заряженного конденсатора.
- 1.21. Энергия электростатического поля.
Лекция 4
Проводники в электростатическом поле. Конденсаторы. Энергия электрического поля.
![]()
|
Опыт показывает, что при равновесии электрические заряды распределяются на внешней поверхности проводников (рис.4.1). Поэтому, согласно теореме Гаусса, электрическое поле внутри проводника
, а потенциал φ = const.
Рис.4.1. Опыт, иллюстрирующий равновесное распределение зарядов на проводнике.
Из сказанного следует, что при равновесии зарядов поверхность проводника является эквипотенциальной. Вблизи поверхности заряженного проводника силовые линии перпендикулярны его поверхности, и поэтому работа по перемещению заряда вдоль любой линии на поверхности проводника
.
При внесении незаряженного проводника в электрическое поле на его внешней поверхности появляются индукционные заряды противоположного знака, электрическое поле которых компенсирует внутри проводника внешнее поле. На этом свойстве проводников основано действие электростатической защиты (рис.4.2).
Можно
![]()
Нельзя
Рис.4.2. Электростатическая защита.