link1924 link1925 link1926 link1927 link1928 link1929 link1930 link1931 link1932 link1933 link1934 link1935 link1936 link1937 link1938 link1939 link1940 link1941 link1942 link1943 link1944 link1945 link1946 link1947 link1948 link1949 link1950 link1951 link1952 link1953 link1954 link1955 link1956 link1957 link1958 link1959 link1960 link1961 link1962 link1963 link1964 link1965 link1966 link1967 link1968 link1969 link1970 link1971 link1972 link1973 link1974 link1975 link1976 link1977 link1978 link1979 link1980 link1981 link1982 link1983 link1984 link1985 link1986 link1987 link1988 link1989 link1990 link1991 link1992 link1993 link1994 link1995 link1996 link1997 link1998 link1999 link2000 link2001 link2002 link2003 link2004 link2005 link2006 link2007 link2008 link2009 link2010 link2011 link2012 link2013 link2014 link2015 link2016 link2017 link2018 link2019 link2020 link2021 link2022 link2023 link2024 link2025 link2026 link2027 link2028 link2029 link2030 link2031 link2032 link2033 link2034 link2035 link2036 link2037 link2038 link2039 link2040 link2041 link2042 link2043 link2044 link2045 link2046 link2047 link2048 link2049 link2050 link2051 link2052 link2053 link2054 link2055 link2056 link2057 link2058 link2059 link2060 link2061 link2062 link2063 link2064 link2065 link2066 link2067 link2068 link2069 link2070 link2071

Лекция по системному анализу в чрезвычайных ситуациях. Часть 3

2.2. Типы и виды математических моделей

В рамках данного курса невозможно рассмотреть все виды математических моделей. Остановимся на некоторых из них.

1. Динамические модели.

Динамические модели стали развиваться во многом благодаря развитию вычислительной техники, так как связаны с необходимостью решать большое число (сотни) уроавнений за котороткий промежуток времени. Эти уравнения являются более или менее сложными математическими описаниями того, как функционирует исследуемая система и даются они в форме выражений для “уровней” различных типов, “темп” изменения которых регулируется управляющими функциями. Уравнения для уровней описывают накопление в системе таких, например, величин, как вес, количество энергии, количество организмов, а уравнения для темпов управляют изменением этих уровней во времени. Управляющие функции отражают правила, регулирующие функционирование системы. В динамических моделях часто используются уравнения неразрывности —  соотношения между потоками переменной в какую-то часть системы и из нее со скоростью изменения этой переменной.

Балансовые модели представляют моделируемый объект как совокупность неких потоков вещества и энер­гии, баланс которых рассчитывается на каждом шаге моделирования. Являются разновидностью динамических моделей. В настоящее время эти модели получили очень широкое распространение благодаря наглядности и сравнительно простой реализации. Однако применение их возможно лишь при решении, общеметодологических вопросов: баланс каких веществ является наиболее важ­ным для рассмотрения; насколько целесообразно подроб­но прослеживать потоки данного вещества; как, выра­зить смену режимов трансформация веществ и.;т.п. 

поиск равновесия. Этот подход основан на постулате о том, что любая большая система может иметь состояние равновесия. Например, в экономических системах это равновесие между спросом и предложением (по Н.Д.Кондратьеву — это равновесие «1-го порядка»), равновесие в структуре цен (равновесие 2-го порядка), равновесие основных капитальных благ» — промышленных изделий, сооружений, квалифицированной рабочей силы, технологий, источников энергии и т.д. (равновесие 3-го порядка).

В экологии может рассматриваться равновесие между определенной численностью хищников и их жертв, между загрязнением окружающей среды и ее способностью к самовосстановлению.

Поиск равновесия очень важен для исследования экономических и экологических систем. При этом следует различать динамическое и статическое равновесие.

Динамическое («подвижное») равновесие предполагает непрерывный обмен веществом и энергией между системой веществ и энергии, поглощаемых и выделяемых системой одинаковы.

При динамическом равновесии сохраняется соответствие между частями системы, все размеры которой одновременно меняются.

Статическое равновесие означает сохранение того же соответствия при неизменных размерах (величинах) частей системы и системы в целом.

Можно проиллюстрировать поиск равновесия на примере определения состояния насыщения рынка. Для этого было предложено уравнение

clip_image013clip_image015

где х — количество товара, t — время, А,Р — константы.

Эта функция описывается «затухающей кривой». Было показано, что она описывает ряд общественных и экономических процессов, например, насыщение рынка книгами по специальным дисциплинам и т.п., если выполняются такие условия, как

- незаменимость товара,

- неизменность цен;

- отсутствие спекулятивных перепродаж;

- приобретение каждым покупателем равного количества;

- отсутствие повторных покупок товара.

Разумеется, это достаточно примитивное уравнение, которое не соответствует подвижному и динамическому равновесию. Для построения более адекватных моделей с равновесием необходимо использование обратных связей.

2 Модели с обратной связью.

Если при составлении модели попытаться учесть внутреннюю структуру и отойти от модели «черного ящика» и поставить одни параметры («входы») в зависимость от других («выходы») получим модель с обратной связью:

clip_image017

Если результат меньше эталона, то за счет регулирования подается сигнал, увеличивающий интенсивность входа. Если больше эталона — подается сигнал, уменьшающий интенсивность входа. Обратная связь положительна, если возрастающие результаты увеличивают интенсивность входа и отрицательна, если возрастающие результаты ослабляют интенсивность входа.

В сложных системах можно выделить несколько последовательно и параллельно связанных между собой контуров обратной связи, т.е. сложные системы являются многоконтурными.

3. Оптимизационные модели

Оптимизационные модели охватывают модели, ма­тематический .аппарат которых позволит решать задачи оптимального управления моделируемым объектом. Они применяются при решении экономических, технических задач, проблем взаимодействия природы и общества. Их построение основано на исполь­зовании методов математического программирования (линейного, нелинейного и динамического программи­рования) при .исследовании систем, описанных дифференциальными уравнениями. Другим примером оптимизационных моделей являются модели, построенные с помощью теории игр. В общем случае они тоже не исключают вероятностного подхода.

4 Модели макрокинетики трансформации веществ и потоков энергии.

К этим моделям относятся модели прогнозирования зон неуправляемого распространения потоков энергии и вредных веществ, прогнозирования концентрации вредных веществ в техносфере. Подобные модели применяются также при моделировании водных экосистем, распространения загрязнителей воздушной среды. Это модели, математическим аппаратом построе­ния которых являются уравнения диффузии. Примене­ние этих моделей ограничено, во-первых, необходи­мостью при их построении делать ряд допущений в общем случае неверных в реальных ситуациях (напри­мер, допущение об отсутствии влияния примесей на скоpoсть течения воды, хотя в реальных условиях в реках, озерах движение воды сплошь и рядом вызвано именно различиями в мутности), Во-вторых, существуют и чисто математические трудности решения систем уравнений в частных производных, каковыми являются уравнения диффузии. Например, непростая проблема выбора шага моделирования (интегрирования) при существенно различных характер­ных временах изменения параметров системы..5 Статистические модели

Статистические модели том, что исследуемый процесс случаен и исследуется статистическими методами, в частности, так называемы­ми методами Монте-Карло. Наиболее успешно последние применяются при неполной информации о соответствую­щих объектах. Существует мнение, что статистические модели эффективны именно при этих условиях. Здесь возникает вопрос, сколь под­робную информацию об объекте вообще нужно учиты­вать в модели и в какой ситуации можно говорить о недостатке информации. При построении и использовании статистических моделей воз­никают следующие проблемы: во-первых, необходим об­ширный фактический естественный материал, позволяю­щий провести его корректную статистическую обработку; во-вторых, установленные зависимости; верные для од­ной системы не всегда будут верны для другой, Например, в экологии смена одной экосистемы* другой (напри­мер, смена сукцессий) не всегда может быть передана прежней моделью.

При моделировании процессов в техносфере необходимо не только определить размер ущерба и зон поражения, но и определить вероятность определенного ущерба. Это видно из самой структуры формулы риска:

{Риск} = {вероятность события}´{значимость события}.

Кроме того, и определение самого характера опасного воздействия вредного везщества или разрушительного воздействия потоков энергии связано с необходимость учета большого числа факторов и параметровю Одни из них должны отражать специфику вредного выброса, другие — состав и характеристики людских, материальных и природных ресурсов, которые определяют их стойкость по отношению к соответствующим воздействиям. При этом число таких существенных факторов велико, они имеют разную направленность и недетерминистскую природу. Здесь, таким образом, необходимо использовать накопленные к настоящему времени статистические данные.

6. Модели типа «хищник — жертва» или «паразит-хозяин»

Эти модели применяются», как это видно из названия, при изучении частных случаев взаимодействия популяций нескольких видов. С помощью данных моделей, также использующих уравнения неразрывности, получен ряд интересных выводов. Однако взаимодействием двух-трех и даже более видов, которые реализуются в таких моделях, не исчерпывается динамика объектов окружаю­щей среды, поэтому такие модели имеют прикладное значение и не являются универсальными.

При моделировании сложных систем их разбивают на подсистемы и потому их математическая модель предстает как некий комплекс подмоделей; для каждой из них может быть использован различ­ный математический аппарат. При этом возникают про­блемы стыковки таких подмоделей. Хотя это довольно сложные вопросы, они успешно решаются.

 7. Имитационное моделирование.

 

Начнем рассмотрение имитационного моделирования с простого примера. Пусть моделью является некоторое дифференциальное уравнение. Решим его двумя способами.

В первом получим аналитическое решение, запрограммируем найденный набор формул и просчитаем на ЭВМ ряд интересующих нас вариантов.

Во втором воспользуемся одним из численных методов решения и для тех же вариантов проследим изменения системы от начальной точки до заданной конечной.

Какой способ лучше, и с каких позиций? Если запись аналитического решения сложна, включает операции вычисления интеграла, то трудоемкость обоих способов будет вполне сравнима. Есть ли принципиальная разница между двумя этими способами? Кажется, что 1-й способ обладает известными преимуществами даже при громоздком аналитическом решении (точность, простота программирования). Но обратим внимание на то, что в первом способе решение в конечной точке дается как функция начала и постоянных коэффициентов дифференциального уравнения. Во втором для его нахождения приходится повторять путь, который система проходит от начальной до конечной точки. В ЭВМ осуществляется воспроизведение, имитация хода процесса, позволяющая в любой момент знать и при необходимости фиксировать его текущие характеристики, такие, как интегральная кривая, производные.

Мы подходим к понятию имитационного моделирования. Но чтобы лучше разобраться в смысле этого термина, рассмотрим применительно к той области, где он возник, — в системах со случайными воздействиями и процессами. Для таких систем в ….-х годах стали моделировать на ЭВМ пошаговое протекание процессов во времени с вводом в нужный момент случайных действий. При этом однократное воспроизведение хода такого процесса в системе мало что давало. Но многократное повторение с разными воздействиями уже неплохо ориентировало исследователя в общей картине, позволяло делать выводы и давать рекомендации по улучшению системы.

Метод стали распространять на классы систем, где надо учесть возможно большее разнообразие в исходных данных, меняющиеся значения внутренних параметров системы, многовариантный режим работы, выбор управления при отсутствии четкой цели и др. Общим оставались специальная организация имитации поведения системы и многократное возобновление процесса по измененным сценариям.

Теперь дадим определение имитационному моделированию.

Моделирование процессов с многократным отслеживанием хода их протекания каждый раз для различных условий называется имитационным моделированием.

Цель этого вида моделирования — получить представление о возможных границах или типах поведения системы, влиянии на нее управлений, случайных воздействий, изменений в структуре и других факторов.

Важной особенностью имитационного моделирования является удобное включение человека, его знаний, опыта, интуиции в процедуру исследования модели. Это делается между отдельными имитациями поведения системы или сериями имитации. Человек изменяет сценарий имитации, что является важным звеном этого вида моделирования. Именно исследователь по результатам проведенных имитаций формирует следующие виды, домысливая полученные сведения, эффективно познает систему, двигается в ее исследовании к поставленной цели. Правда, следует заметить, что управлять процедурой многократной интуиции может и ЭВМ. Однако наиболее полезным ее примером оказывается все-таки в сочетании с оперативным экспертным просмотром и оценкой отдельных имитаций.

Значительная роль человека в имитационном моделировании даже позволяет говорить об определенном противопоставлении методов чисто математического моделирования и имитации. Поясним это на примерах. Пусть мы имеем задачу оптимизации, которую решаем на ЭВМ при помощи некоторого запрограммированного алгоритма. В ряде сложных ситуаций алгоритм может остановиться или «зациклиться» далеко от оптимального решения. Если же учесть весь путь решения шаг за шагом будет контролироваться исследователем, то это позволит, подправляя и возобновляя работу алгоритма, достичь удовлетворительного решения. Второй пример возьмем из области систем со случайными воздействиями. Последние могут иметь такие «плохие» вероятностные свойства, что математическая оценка их влияние на систему практически невозможна. Вот тогда исследователь начинает машинные эксперименты с разными видами этих действий и постепенно получает хоть какую-то картину их влияний на систему.

Однако противопоставлять имитационное моделирование математическому в целом было бы методически неверно. Правильнее ставить вопрос об их удачном совмещении. Так, строгое решение математических задач, как правило, является составной частью имитационной модели. С другой стороны, исследование крайне редко удовлетворяется однократным решением поставленной математической задачи. Обычно он стремится решить наиболее близких задач для выяснения «чувствительности» решения, уравнения с альтернативными вариантами задания исходных данных, а это не что иное, как элементы имитации.

Есть и другая веская причина широкого распространения имитационных моделей.

Достоинством перечисленных ранее математических моделей (оптимизационные, балансовые, статистические и т.п.) является на­личие развитого математического аппарата, а проблемы и трудности заключаются в выполнении допущений, на­лагаемых использованием данного аппарата, при фор­мализации имеющейся информации. Другой проблемой следует считать недостаток информации. В связи с этим необходимо отметить, что имеющийся математический аппарат в основном создавался для решения специфи­ческих задач классической физики 19-го и начала 20 в. Бурное развитие естествознания в 20 в. предъявило ряд новых требований, что привело к созданию совре­менных отраслей математики, сгруппированных вокруг кибернетики.

Следовательно, основные проблемы применения упо­мянутых методов моделирования в исследованиях по безопасности и в экологии связаны с неподготовленностью математического аппарата для ис­следования новых систем. Поэтому при разработке нового аппарата и в математике иногда идут от объекта к теории, а не наоборот. Как раз такому подходу и соответствует метод имитационно­го математического моделирования. Здесь можно дать еще одно определение имитационному моделированию, характеризующее его с другой стороны:

Имитационное моделирование есть попытка формализации с помощью современных ЭВМ любых эмпирических знаний о рассматриваемом объекте.

То есть, имитационная модель представляет собой пол­ное формализованное описание в ЭВМ изучаемого явле­ния на грани нашего понимания. Слова «на грани на­шего понимания» означают, что в процессе имитацион­ного моделирования причинно-следственные связи необя­зательно прослеживать «до последнего гвоздя». Для по­строения модели достаточно знать лишь внешнюю сторо­ну каких-либо связей типа: «если Л, то В». Для постро­ения модели не столь важно, почему произошло событие В: то ли в результате каких-то сдвигов в балансе веще­ства, то ли по другим причинам. Существенно, что оно произошло после события Л. Это дает возможность более результативно использовать традиционные зна­ния наук о Земле, что было невозможно при попытках учесть все причинно-следственные связи.

В процессе имитационного моделирования при отсутствии информации о функциональных связях элементов системы необходимо шире использо­вать логические переключатели состояний модели, кото­рые в определенной мере отражают эти связи. Кроме того, целесообразно членение модели на отдельные бло­ки, которые сами могут являться самостоятельными мо­делями, причем принципы построения и математический аппарат в каждом блоке могут быть свои. Например, один блок является вероятностной моделью, другой— балансовой н.

В этих условиях математический аппарат играет под­чиненную роль. Гораздо большего внимания требует со­держательная часть моделирования, предварительная типизация, структурирование изучаемых объектов.

Обоснованием для проведения имитационного моделирования служит массовость и стохастичность результатов функционирования исследуемых систем. В отношение моделирования процессов в техносфере, можно сказать следующее:

1) выполнение большинства технологических операций удобно рассматривать в виде процесса функционирования человеко-машинной системы; при этом успешное или неуспешное завершение какой-либо из них следует считать случайным исходом;

2) при рассмотрении конкретной производственной операции, многократно выполняемой на различных объектах промышленности, энергетики и транспорта, можно утверждать массовый характер этих работ.

Таким образом, при анализе безопасности техносферы имитационное моделирование обосновано и целесообразно.

Можно также сказать, что имитационное моделирование является одной из форм диалога человека с ЭВМ и резко повышает эффективность изучения системы. Оно является особенно незаменимым, когда невозможна строгая постановка математической задачи (полезно попробовать разные постановки), отсутствует математический метод решения задачи (можно использовать имитацию для целенаправленного перебора), имеется значительная сложность полной модели (следует имитировать поведение декомпозиционных частей). Наконец, имитацией пользуются и в тех случаях, когда невозможно реализовать математическую модель из-за недостатка квалификации исследователя.

Кроме термина «имитационное моделирование» в литературе употребляется словосочетание «машинное моделирование». В него вкладывают весьма широкий смысл — от синонима имитации до указания на то, что в исследовании для каких-либо целей используется ЭВМ. Однако некоторыми авторами [1] отмечается наш взгляд, наиболее логичным является использование этого понятия в тех случаях, когда манипуляции с моделью целиком или почти целиком выполняются вычислительной техникой и не требуют участия человека.

Вы здесь: Главная БЖД и Охрана труда Чрезвычайные ситуации Лекция по системному анализу в чрезвычайных ситуациях. Часть 3