link1776 link1777 link1778 link1779 link1780 link1781 link1782 link1783 link1784 link1785 link1786 link1787 link1788 link1789 link1790 link1791 link1792 link1793 link1794 link1795 link1796 link1797 link1798 link1799 link1800 link1801 link1802 link1803 link1804 link1805 link1806 link1807 link1808 link1809 link1810 link1811 link1812 link1813 link1814 link1815 link1816 link1817 link1818 link1819 link1820 link1821 link1822 link1823 link1824 link1825 link1826 link1827 link1828 link1829 link1830 link1831 link1832 link1833 link1834 link1835 link1836 link1837 link1838 link1839 link1840 link1841 link1842 link1843 link1844 link1845 link1846 link1847 link1848 link1849 link1850 link1851 link1852 link1853 link1854 link1855 link1856 link1857 link1858 link1859 link1860 link1861 link1862 link1863 link1864 link1865 link1866 link1867 link1868 link1869 link1870 link1871 link1872 link1873 link1874 link1875 link1876 link1877 link1878 link1879 link1880 link1881 link1882 link1883 link1884 link1885 link1886 link1887 link1888 link1889 link1890 link1891 link1892 link1893 link1894 link1895 link1896 link1897 link1898 link1899 link1900 link1901 link1902 link1903 link1904 link1905 link1906 link1907 link1908 link1909 link1910 link1911 link1912 link1913 link1914 link1915 link1916 link1917 link1918 link1919 link1920 link1921 link1922 link1923

Лекция по системному анализу в чрезвычайных ситуациях. Часть 3

2.1. Место математического моделирования в системных исследованиях

Из рассмотренного ранее нам должно быть понятно, что системный анализ не есть какой-то конкретный метод. Это стратегия научного поиска, которая использует математические концепции, математический аппарат в рамках систематизированного научного подхода к решению сложных проблем. При этом так или иначе выделяется ряд последовательных, взаимосвязанных этапов (рис. 1).Рассмотрение вместо самой системы (т.е. явления, процесса, объекта) и модели всегда связано с упрощением. Главная проблема здесь — выделение тех особенностей, которые существенны для целей рассмотрения. К настоящему времени разработано множество удачных моделей, например, такие как:

- конечноэлементная модель для решения различных прикладных задач (статика, динамика, прочность конструкций, динамика оболочек и т.п.);

- генетический код;

и др.

Ранее нами было выделено два основных вида моделей: материальные (макеты, физические модели, масштабированные модели и т.п.) и идеальные (вербальные, знаковые).

При построении моделей процессов в техносфере приходится прибегать как к так называемым интуитивным («ненаучным») моделям, так и к семантическим (смысловым).

Под интуитивным моделированием подразумевают моделирование, использующее представление объекта, не обоснованное с точки зрения формальной логики. Это представление может не поддаваться, или трудно поддаваться формализации или же вообще не нуждаться в ней. Такое моделирование человек осуществляет в своем сознании в форме мысленных экспериментов, сценариев и игровых ситуаций с целью подготовки к предстоящим практическим действиям. Основой для подобных моделей служит опыт — знания и умения людей, а также любое эмпирическое знание, полученное из эксперимента или процесса наблюдения без объяснения причин и механизма наблюдаемого явления.

clip_image001ко

Семантическое моделирование, в отличие от интуитивного, логически обосновано с помощью некоторого числа исходных предположений. Сами эти предположения нередко облекаются в форму гипотез. Семантическое моделирование предполагает знание внутренних механизмов явления. К методам семантического моделирования относятся вербальное (словесное) и графическое моделирование (см. рис. 2).

clip_image002[4]

Семиотическое, или знаковое моделирование является, в отличие от семантического, наиболее формализованным, поскольку использует не только слова естественного языка и изображения, но и различные символы — буквы, цифры, иероглифы, нотные знаки. В последующем все они объединяются с помощью специфических правил. К этому виду моделирования относится математическое моделирование.

К знаковым моделям относятся химические и ядерные формулы, графики, схемы, графы, чертежи, топографические карты и т.п. Среди знаковых моделей выделяется их высший класс — математические модели, т.е. модели, при описании которых используется язык математики.

Математическая модель (ММ) — это описание протекания процесса, описание состояния или изменения состояния системы на языке алгоритмических действий с математическими формулами и логических переходов.

Кроме того, ММ допускает работы с таблицами, графиками, номограммами, выбор из совокупности процедур и элементов (последнее подразумевает использование операций предпочтения, частичной упорядоченности, включения, определение принадлежности и т.п.).

Различные математические правила манипулирования со связями системы позволяют делать предсказания относительно тех изменений, которые могут произойти в исследуемых системах, когда изменяются их составляющие.

Сложность формирования математической модели связана с необходимостью владения математическими методами и предметных знаний, т.е. знаний в той области, для которой создается модель. В реальности специалисту в данной практической области часто не хватает математических знаний, сведений о моделировании вообще, а для сложных задач — знания системного анализа. С другой стороны, прикладному математику трудно хорошо ориентироваться в предметной области.

Следует заметить, что деление моделей на вербальные, натурно знаковые в определенной степени условно. Так, существуют смешанные типы моделей, скажем, использующие и вербальные, и знаковые построения. Можно даже утверждать, что нет знаковой модели без сопровождающей описательной — ведь любые знаки и символы необходимо пояснять словами. Часто и отнесение модели к какому-либо типу является нетривиальным.

Общие и конкретные модели. Все типы моделей необходимо перед их применением к конкретной системе наполнить информацией, соответствующей используемым силам, макетам, общим понятиям. Наполнение информацией в большей степени свойственно знаковым моделям, в наименьшей — натурным. Так, для математической модели — это выделенные (вместо буквенных) значения физических величин коэффициентов, параметров; конкретные виды функций, определенные последовательности действий, графы структуры Наполненную информацией модель принято называть конкретной, содержательной.

Модель без наполнения информацией до уровня соответствия единичной реальной системе называется общей (теоретически абстрактной, системной).

Так, в процессе декомпозиции мы используем понятие формальной модели. Это относится ко всем типам моделей, в том числе, к математическим.

Чтобы уяснить место математической модели рассмотрим процесс формирования собственно научного знания. Принято делить науки на две группы.

а) точные — (скорее термин «точные» основан на вере, что открываемые закономерности являются абсолютно точными);

б) описательные.

Точные науки — обладают средствами предвидеть с практически достаточной точностью развитие процессов, изучаемых данной наукой на достаточно длительный (опять-таки по практическим соображениям) промежуток времени, или же предвидеть достаточно точно свойства и отношения изучаемых объектов по некоторой частичной информации о них.

Описательные науки – по сути перечень фактов об изучаемых ими объектах и процессах, иногда не связанных между собой, иногда связанных некоторыми качественными отношениями, а также порой разрозненными количественными (как правило, эмпирическими связями). К точным наукам относятся математика и науки физического цикла. Остальные науки — в большей или меньшей степени являются описательными.

Однако в Древнем Египте даже математика не могла быть в полной мере отнесена к точным наукам (так, геометрия была представлена как «сборник рецептов», например, вычислять площадь круга как ¾ площади описанного квадрата).

Развитие науки идет параллельными путями («руслами»). Различные русла начинаются в разное время, но раз начавшись, продолжаются.

1) накопление информации об объектах изучения; (научное накопление информации отличается от стихийного целеустремленностью);

2) процесс упорядочивания информации — классификация объектов (отличие от «наивной», «потребительской» классификации — цель: обеспечить анализ, следовательно субъективизма меньше) → находятся в постоянной взаимосвязи (процесс идентификации), т.е. каждый новый объект анализируется: принадлежит ли он к уже установленным классификационным группам, или указывает на необходимость перестройки системы классификации;

3) установление связей и соотношений (качественных или количественных) между объектами. Эти связи обнаруживаются в результате постоянного анализа накапливаемой и упорядоченной информации.

Эти три русла характеризуют «описательный» период развития науки, который может длиться весьма долго. Примером может служить развитие механики, геометрии.

Переход к точной науке означает попытки построения математического моделирования процессов. Но математическая модель может строиться на каких-то количественно строго определенных величинах. Отсюда — два необходимых этапа математического моделирования:

4) установление величины;

5) установление взаимосвязи.

clip_image003[4]clip_image004[4]clip_image005clip_image006[4]clip_image007clip_image008clip_image009clip_image010clip_image011

Можно привести следующий пример: законы статики сформулировал Архимед, Аристотель ввел понятие силы, скорости, пути. Но потребовалось около 2000 лет (!) на установление связи величин. Становление механики как точной науки стало возможным, когда Ньютон понял, что силу надо связывать с ускорением, а не скоростью, как это пытались делать раньше.

Задачи математического моделирования сами имеют свою сложную структуру. Модель, описывающая широкий класс явлений (например, математическая модель механических движений — законы Ньютона) подразделяются на частные классы математических моделей: механика точки, системы материальных точек, сплошной среды, твердого тела → еще более частные модели, например, упругого тела и т.п. на самом нижнем уровне — ММ конкретных процессов.

Обычно процесс построения моделей часто осуществляется не дедуктивно, а «снизу вверх».

Вы здесь: Главная БЖД и Охрана труда Чрезвычайные ситуации Лекция по системному анализу в чрезвычайных ситуациях. Часть 3