Лекция по Безопасности жизнедеятельности
- Лекция по Безопасности жизнедеятельности
- 1.2 Основные понятия и определения БЖД
- 1.3 Опасность, номенклатура опасностей, таксономия опасностей
- Тема 2: Концепция приемлемого (допустимого риска)
- 2.2. Управление риском. Системный анализ безопасности.
- 2. 3. Анализ причинно-следственных связей между реализованными опасностями и причинами.
- 2.4.Логические операции при системном анализе безопасности.
- Тема 3: Принципы, методы и средства обеспечения безопасности деятельности
- 3.2 Методы обеспечения безопасности. Классификация. Определения
- 3.3 Основы управления безопасностью деятельности
- 3.4 Функции управления БЖД
- Тема 4: Психология БЖД (антропогенные опасности)
- 4.2. Психические процессы и состояния.
- 4.3. Особые психические состояния.
- 4.4. Мотивация деятельности
- Тема 5: Социальные опасности
- Тема 6: Экологические опасности
- 6.2 Источники экологических опасностей
- 6.3 Тяжёлые металлы
- 6.4 Пестициды
- 6.5 Диоксины
- 6.6 Серы, фосфора и азота
- 6.7 Фреоны
- 6.8 Продукты питания
- Тема 7: Природные опасности
- 7.2 Литосферные опасности
- 7.3 Гидросферные опасности
- 6.4 Атмосферные опасности
- 7.5 Космические опасности
2. ЛИТОСФЕРНЫЕ ОПАСНОСТИ
ЗЕМЛЕТРЯСЕНИЯ
Планета Земля представляет по форме трехосный эллипсоид со средним радиусом 6371 км. Земля состоит из нескольких различных по составу и физическим свойствам оболочек-геосфер. В центре Земли находится ядро, за ним следует мантия, затем земная кора, гидросфера и атмосфера. Верхняя граница мантии проходит на глубине от 5 до 70 км по поверхности Мохоровичича (см. рис. 16), нижняя — на глубине 2900 км по границе с ядром Земли. Мантия Земли делится на верхнюю толщиной около 900 км и нижнюю — около 2000 км. Верхняя мантия вместе с земной корой образуют литосферу. Температура в мантии считается равной 2000-2500°С, а давление находится в пределах 1-130 ГН/м2. Именно в мантии происходят тектонические процессы, вызывающие землетрясения. Наука, изучающая землетрясения, называется сейсмологией.
Землетрясения — это подземные толчки и колебания земной поверхности, возникающие в результате внезапных смещений и разрывов в земной коре или верхней части мантии и передающиеся на большие расстояния в виде упругих колебаний.
Природа землетрясений до конца не раскрыта. Землетрясения происходят в виде серии толчков, которые включают форшоки, главный толчок и афтершоки. Число толчков и промежутки времени между ними могут быть самыми различными. Главный толчок характеризуется наибольшей силой. Продолжительность главного толчка обычно несколько секунд, но субъективно людьми толчок воспринимается как очень длительный. Согласно данным психиатров и психологов, изучавших землетрясения, афтершоки иногда производят более тяжелое психическое воздействие, чем главный толчок. У людей под воздействием афтершоков возникало ощущение неотвратимости беды, и они, скованные страхом, бездействовали вместо того, чтобы искать безопасное место и защищаться.
Очаг землетрясения — это некоторый объем в толще Земли, в пределах которого происходит высвобождение энергии. Центр очага — условная точка, именуемая гипоцентром, или фокусом.
Проекция гипоцентра на поверхность Земли называется эпицентром. Вокруг него происходят наибольшие разрушения. Это так называемая плейстосейстовая область.
Количество землетрясений, ежегодно регистрируемых на земном шаре, измеряется сотнями тысяч, а по данным других авторов — миллионами. В среднем каждые 30 с регистрируется одно землетрясение. Однако большинство из них относится к слабым, и мы их не замечаем. Силу землетрясения оценивают по интенсивности разрушений на поверхности Земли. Существует много сейсмических шкал интенсивности. Шкалу интенсивности в 80-е гг. XIX в. создали Де Росси и Форель (от I до X), в 1920 г. итальянец Меркалли предложил другую шкалу с диапазоном значений от I до XII, в 1931 г. эта шкала была усовершенствована Вудом и Ньюменом. В 1963 г. С. Медведев с соавторами предложили новую шкалу. По международной шкале MSK-64 сила землетрясений оценивается в баллах.
Линии, соединяющие пункты с одинаковой интенсивностью колебаний, называются изосейстами.
В 1935 г. профессор Калифорнийского технологического института Ч. Рихтер предложил оценивать энергию землетрясения магнитудой (от лат. magnitude — величина). Сейсмологи используют несколько магнитуд-ных шкал. В Японии используют шкалу из семи магни-туд. Именно из этой шкалы исходил Рихтер К. Ф., предлагая свою усовершенствованную 9-магнитудную шкалу. Шкала Рихтера — сейсмическая шкала магнитуд, основанная на оценке энергии сейсмических волн, возникающих при землетрясениях. Магнитуда самых сильных землетрясений по шкале Рихтера не превышает 9.
Магнитуда землетрясений — условная величина, характеризующая общую энергию упругих колебаний, вызванных землетрясением. Магнитуда пропорциональна логарифму энергии землетрясений и позволяет сравнивать источники колебаний по их энергии.
Значение магнитуды землетрясений определяется из наблюдений на сейсмических станциях. Колеба-ния грунта, возникающие при землетрясениях, регистрируются спец. приборами — сейсмографами.
Результатом записи сейсмических колебаний является сейсмограмма, на которой записываются продольные и поперечные волны. Наблюдения над землетрясениями осуществляются сейсмической службой страны
Землетрясения распространены по земной поверхности очень неравномерно. Анализ сейсмических, географических данных позволяет наметить те области, где следует ожидать в будущем землетрясений и оценить их интенсивность. В этом состоит сущность сейсмического районирования.
Карта сейсмического районирования — это официальный документ, которым должны руководствоваться проектирующие организации.
Пока не решена проблема прогноза, т. е. определения времени будущего землетрясения. Основной путь к решению этой проблемы — регистрация «предвестников» землетрясения: слабых предварительных толчков (форшоков), деформации земной поверхности, изменений параметров геофизических полей и др. Знание временных координат потенциального землетрясения во многом определяет эффективность мероприятий по защите во время землетрясений.
В районах, подверженных землетрясениям, осуществляется сейсмостойкое, или антисейсмическое строительство. Это значит, что при проектировании и строительстве учитываются возможные воздействия на здания и сооружения сейсмических сил. Требования к объектам, строящимся в сейсмических районах, устанавливаются строительными нормами и правилами и другими документами. По принятой в России 12-балльной шкале опасными для зданий и сооружений считаются землетрясения, интенсивность которых 7 баллов и более. Строительство в районах с сейсмичностью, превышающей 9 баллов, неэкономично. Поэтому в правилах и нормах указания ограничены районами 7-9-балльной сейсмичности. Обеспечение полной сохранности зданий во время землетрясений обычно требует больших затрат на антисейсмические мероприятия, а в некоторых случаях практически неосуществимо. Учитывая, что сильные землетрясения происходят редко, нормы допускают возможность повреждения элементов, не представляющих угрозы для людей. Наиболее благоприятными в сейсмическом отношении считаются скальные грунты. Сейсмостойкость сооружений существенно зависит от качества строительных материалов и работ. Методы расчетной оценки сейсмостойкости сооружений имеют приближенный характер. Поэтому нормы вводят ряд обязательных конструктивных ограничений и требований. К их числу относится, например, ограничение размеров строящихся зданий в плане и по высоте. Для уточнений данных сейсмического районирования проводится сейсмическое микрорайонирование, с помощью которого интенсивность землетрясений в баллах, указанная на картах, может быть скорректирована на + 1...2 балла в зависимости от местных тектонических, геоморфологических и грунтовых условий.
Землетрясение — грозная стихия, не только разрушающая города, но и уносящая тысячи человеческих жизней. Так, в 1908 г. землетрясением с магнитудой 7,5 разрушен г. Мессина (Италия), погибло более 100 тыс. человек. В 1923 г. катастрофическое землетрясение (магнитуда 8,2) с эпицентром на острове Хонсю (Япония) разрушило Токио, Иокогаму, погибли около 150 тыс. человек. В 1948 г. землетрясением разрушен Ашхабад, магниту да 7, сила — IX баллов.
Иногда землетрясениям предшествуют грозовые разряды в атмосфере, выделения метана из земной коры. Это так называемые «предвестники» землетрясений. Возникающие при землетрясении колебания могут быть причиной вторичных эффектов в виде оползней и селевых потоков, цунами (сейши), снежных лавин, наводнений, разломов в скальных породах, пожаров, коробления земной поверхности.
Проблема защиты от землетрясений стоит очень остро. В ней необходимо различать две группы антисейсмических мероприятий:
а) предупредительные, профилактические мероприятия, осуществляемые до возможного землетрясения;
б) мероприятия, осуществляемые непосредственно перед, во время и после землетрясения, т. е. действия в чрезвычайных ситуациях.
К первой группе относится изучение природы землетрясений, раскрытие его механизма, идентификация предвестников, разработка методов прогноза и др.
На основе исследований природы землетрясений могут быть разработаны методы предотвращения и прогноза этого опасного явления. Очень важно выбирать места расположения населенных пунктов и предприятий с учетом сейсмостойкости района. Защита расстоянием — лучшее средство при решении вопросов безопасности при землетрясениях. Если строительство все-таки приходится вести в сейсмоопасных районах, то необходимо учитывать требования соответствующих правил и норм (СНиПов), сводящиеся в основном к усилению зданий и сооружений. Эффективность действий в условиях землетрясений зависит от уровня организации аварийно-спасательных работ и обученности населения, эффективности системы оповещения.
СЕЛИ
Сели — кратковременные бурные паводки на горных реках, имеющие характер грязекаменных потоков.
Причинами селей могут явиться землетрясения, обильные снегопады, ливни, интенсивное таяние снега.
Основная опасность — огромная кинетическая энергия грязеводных потоков, скорость движения которых может достигать 15 км/ч.
По мощности селевые потоки делят на группы: мощные (вынос более 100 тыс. м3 селевой массы), средней мощности (от 10 до 100 тыс. м3), слабой мощности (менее 10 тыс. м3). Селевые потоки происходят внезапно, быстро нарастают и продолжаются обычно от 1 до 3 ч, иногда 6-8 ч. Сели прогнозируются по результатам наблюдений за прошлые годы и по метеорологическим прогнозам.
К профилактическим противоселевым мероприятиям относятся: гидротехнические сооружения (селезадер-живающие, селенаправляющие и др.), спуск талой воды, закрепление растительного слоя на горных склонах, лесопосадочные работы, регулирование рубки леса и др. В селеопасных районах создаются автоматические системы оповещения о селевой угрозе и разрабатываются соответствующие планы мероприятий.
СНЕЖНЫЕ ЛАВИНЫ
Лавина — это снежный обвал, масса снега, падающая или сползающая с горных склонов под влиянием какого-либо воздействия и увлекающая на своем пути новые массы снега.
Одной из побудительных причин лавины может быть землетрясение. Снежные лавины распространены в горных районах.
По характеру движения лавины делятся на склоновые, лотковые и прыгающие.
Опасность лавины заключается в большой кинетической энергии лавинной массы, обладающей огромной разрушительной силой. Лавины образуются на безлесных склонах крутизной от 15° и более. Оптимальные условия для образования лавин на склонах в 30-40°. При крутизне более 50° снег осыпается к подножию склона и лавины не успевают сформироваться. Сход лавины начинается при слое свежевыпавшего снега в 30 см, а старого более 70 см. Скорость схода лавины может достигать 100 м/с, а в среднем 20-30 м/с. Точный прогноз времени схода лавины невозможен. Имеются сведения о том, что в Европе ежегодно лавины разного вида уносят в среднем около 100 человеческих жизней.
Противолавинные профилактические мероприятия делятся на 2 группы: пассивные и активные.
Пассивные способы состоят в использовании опорных сооружений, дамб, лавинорезов, надолбов, снегоудерживающих щитов, посадках и восстановлении леса и др.
Активные методы заключаются в искусственном провоцировании схода лавины в заранее выбранное время и при соблюдении мер безопасности. С этой целью производится обстрел головных частей потенциальных срывов лавины разрывными снарядами или минами, организуются взрывы направленного действия, используются сильные источники звука. В лавиноопасных регионах могут создаваться Противолавинные службы, предусматривается система оповещения и разрабатываются планы мероприятий по защите от лавин.
ИЗВЕРЖЕНИЕ ВУЛКАНОВ
Совокупность явлений, связанных с перемещением магмы в земной коре и на ее поверхности, называется вулканизмом.
Магма (от греч. magma — густая мазь) — это расплавленная масса преимущественно силикатного состава, образующаяся в глубинных зонах Земли. Достигая земной поверхности, магма изливается в виде лавы.
Лава отличается от магмы отсутствием газов, улетучивающихся при извержении. Вулканы (по имени бога огня Вулкана) представляют геологические образования, возникающие над каналами и трещинами в земной коре, по которым извергается на земную поверхность магма. Обычно вулканы представляют отдельные горы, сложенные продуктами извержений.
Вулканы разделяются на действующие, уснувшие и потухшие.
К уснувшим относятся вулканы, об извержениях которых нет сведений, но они сохранили свою форму и под ними происходят локальные землетрясения.
Потухшие — это различные вулканы без какой-либо вулканической активности.
Магматические очаги находятся в мантии на глубине 50-70 км или в земной коре на глубине 5-6 км.
Извержения вулканов бывают длительными и кратковременными. Продукты извержения (газообразные, жидкие и твердые) выбрасываются на высоту 1-5 км и переносятся на большие расстояния. Концентрация вулканического пепла бывает настолько большой, что возникает темнота, подобная ночной. Объем излившейся лавы достигает десятков км3. Известно извержение вулкана Везувия в августе 79 г., в результате которого погиб город Помпеи. Толщина слоя вулканического пепла, покрывшего этот город, составляет 8 м.
Существуют следующие типы извержений: эффузивный (гавайский), смешанный (стромболианский), эк-струзивный (купольный).
Замечена взаимозависимость между вулканической деятельностью и землетрясениями,
Основой прогноза извержения являются сейсмические толчки, характеризующие начало извержения.
Основные опасности — лавовые фонтаны, потоки горячей лавы, раскаленные газы. Взрывы вулканов могут инициировать оползни, обвалы, лавины, а на морях и океанах — цунами.
Профилактические мероприятия состоят в изменении характера землепользования, строительстве дамб, отводящих потоки лавы, в бомбардировке лавового потока для перемешивания лавы с землей и превращения ее в менее жидкую и др.
ОПОЛЗНИ
Оползень — скользящее смещение вниз по уклону под действием сил тяжести масс грунта, формирующих склоны холмов, гор, речные, озерные и морские террасы.
По механизму оползневого процесса выделяют такие типы оползней: сдвиг, выдавливание, гидравлический вынос и др.
По глубине залегания поверхностного скольжения различают оползни: поверхностные — до 1 м, мелкие — до 5 м, глубокие — до 20 м, очень глубокие — свыше 20м.
По мощности, вовлекаемой в процесс массы горных пород, оползни распределяют на: малые — до 10 тыс. м3, крупные — от 101 до 1000 тыс. м3, очень крупные — свыше 1000 тыс. M3.
По скорости движения оползни бывают: быстрые (время развития измеряется секундами или минутами), средней скорости (минуты, часы), медленные (дни, годы).
Оползни формируются, как правило, на участках, сложенных чередующимися водоупорными и водоносными породами грунта. Оползни возникают вследствие нарушения равновесия пород. Когда силы сцепления на поверхности скольжения становятся меньше составляющей силы тяжести, масса начинает движение. Опасность
оползней заключается в том, что огромные массы почво-грунтов, внезапно смещаясь, могут привести к разрушению зданий и сооружений и большим жертвам.
Побудителями оползневых процессов являются землетрясения, вулканы, строительные работы и др.
Предупреждение и защита от оползней предусматривает ряд пассивных и активных мероприятий.
К пассивным относят мероприятия охранно-ограничительного вида: запрещение строительства, производства взрывных работ, надрезки оползневых склонов.
К активным мероприятиям относят устройство различных инженерных сооружений: подпорных стенок, свайных рядов и т. п. В опасных местах предусматривается система наблюдения и оповещения населения, а также действия соответствующих служб по организации аварийно-спасательных работ.