Электричество и магнетизм. Часть 4

5.2. Свободные затухающие колебания. Добротность колебательного контура.

Всякий реальный колебательный контур обладает сопротивлением (рис.16.3). Энергия электрических колебаний в таком контуре постепенно расходуется на нагревание сопротивления, переходя в джоулево тепло, вследствие чего колебания затухают.

clip_image204

Рис.16.3. Колебательный RLC-контур.

Уравнение свободных затухающих колебаний можно получить, исходя из того, что в отсутствии внешнего источника напряжения, сумма падений напряжений на индуктивности, емкости и сопротивлении равна нулю для любого момента времени:

clip_image206

или, посколькуclip_image183[1],

clip_image208.

Введя обозначение

clip_image210 ,

этому уравнению можно придать вид:

clip_image212,

где clip_image214.

Решение полученного уравнения имеет вид:

     
  clip_image217
 
  clip_image218

где

 
  clip_image220

Мы видим, что частота свободных затухающих колебаний ω меньше собственной частоты ω0. Подставив значения ω0 и β, получим:

clip_image222

Амплитуда затухающих колебаний заряда конденсатора q0(t) уменьшается со временем по экспоненциальному закону (рис.16.4). Коэффициент β называется коэффициентом затухания.

clip_image224

Рис.16.4. Изменение заряда конденсатора со временем в RLC-контуре.

Затухание колебаний принято характеризовать декрементом колебаний λ, определяемым как:

clip_image226.

Легко видеть, что декремент колебаний обратен по величине числу колебаний Ne, совершаемых за время, в течение которого амплитуда колебаний уменьшается в е раз: λ=1/Ne. Добротностью колебательного контура называется величина:

clip_image228

Из этой формулы видно, что добротность тем выше, чем меньше коэффициент затухания β. При малых затуханиях (λ<<1) можно приближенно считать, что

clip_image230.

Амплитуда тока в контуре, как и заряд на конденсаторе, убывает со временем по закону clip_image232. Энергия W, запасенная в контуре, пропорциональна квадрату амплитуды тока (или квадрату напряжения на конденсаторе). Следовательно, W убывает со временем по закону e-2βt. Относительное уменьшение энергии за период колебания Т (при малом затухании) есть:

clip_image234.

Таким образом, потери энергии в колебательном контуре тем меньше, чем выше его добротность.

 

Вы здесь: Главная Физика Электричество и магнетизм Электричество и магнетизм. Часть 4