Электричество и магнетизм. Часть 4

5.4. Резонансные явления в колебательном контуре. Резонанс напряжений и резонанс токов.

Как следует из приведенных формул, при частоте переменной ЭДС ω, равной

clip_image278 ,

амплитудное значение силы тока в колебательном контуре, принимает максимальное значение clip_image280. При этом амплитуда напряжения на активном сопротивлении R также максимальна и равна UR0 =I0maxR =E0. Падения напряжения на емкости UC и индуктивности UL одинаковы по амплитуде, но противоположны по фазе, и они взаимно компенсируют друг друга. Это явление, имеющее место в последовательномколебательном контуре, изображенном на рис.16.5, называется резонансом напряжений. Векторная диаграмма, соответствующая этому случаю, показана на рис.16.7.

clip_image281

Рис.16.7. Векторная диаграмма при резонансе напряжений.

Максимальное значение амплитуды напряжения на конденсаторе UC0(ω) достигается при частоте

clip_image006[2]clip_image283.

Резонансные кривые для UC0(ω) представлены на рис.16.8. Максимум получается тем выше и острее, чем меньше коэффициент затухания β, то есть чем меньше активное сопротивление R и больше индуктивность контура L.

 
  clip_image285

Рис.16.8. Резонансные кривые UC0(ω).

Если источник переменной ЭДС подключить параллельно конденсатору, то получим колебательный контур, который называется параллельным(рис.16.9).

clip_image286

Рис.16.9. Параллельный колебательный RLC-контур.

В таком контуре при clip_image288 наблюдается другое резонансное явление, получившее название резонанса токов. При резонансе токов токи, текущие через емкость и индуктивность одинаковы по амплитуде, но противоположны по фазе. При этом общий ток в цепи ЭДС близок к нулю, хотя токи в самом контуре могут быть очень велики. Векторная диаграмма, соответствующая этому случаю, приведена на рис.16.10.

clip_image289

Рис.16.10. Векторная диаграмма при резонансе токов.

Можно показать, что при резонансе токов полное сопротивление Z(ω) параллельного контура максимально и равно чисто активному сопротивлению R. Резонансная частота, при которой Z(ω) максимально, определяется из условия равенства нулю реактивной части комплексного сопротивления clip_image291:

ωL(1 — ω2LC) — ωCR2 = 0 ,

откуда

clip_image293.

clip_image295Резонансные кривые для амплитудных значений IC0(ω) тока, текущего через конденсатор, приведены на рис.16.11.

               
 

IC0

 
    clip_image296

ω

ωрез ω0

Рис.16.11. Резонансные кривые IC0(ω).

Резонансные явления в колебательных контурах широко используются в электро- и радиотехнике (резонансные усилители, частотные фильтры и другие). В частности, явление резонанса используется для выделения из сложного сигнала нужной частотной составляющей. Настроив контур (путем изменения его параметров C и/или L) на одну из выбранных частот, можно получить на конденсаторе напряжение, в Q раз превышающее величину напряжения данной частотной составляющей (см. рис.16.8). Такой процесс осуществляется, например, при настройке радиоприемника на нужную длину волны.

Вы здесь: Главная Физика Электричество и магнетизм Электричество и магнетизм. Часть 4