Электричество и магнетизм. Часть 4
- Электричество и магнетизм. Часть 4
- 4.12. Вихревое электрическое поле. Первое уравнение Максвелла.
- 4.13. Второе уравнение Максвелла, третье уравнение Максвела
- 4.15. Четвертое уравнение Максвелла.
- 4.16. Дифференциальная форма уравнений Максвелла.
- 4.17. Замкнутая система уравнений Максвелла. Материальные уравнения.
- 4.18. Следствия из уравнений Максвелла. Электромагнитные волны. Скорость света.
- Колебания и волны: электромагнитные колебания
- 5.2. Свободные затухающие колебания. Добротность колебательного контура.
- 5.3. Вынужденные электрические колебания. Метод векторных диаграмм.
- 5.4. Резонансные явления в колебательном контуре. Резонанс напряжений и резонанс токов.
- 5.5. Волновое уравнение. Типы и характеристики волн.
- 5.6. Электромагнитные волны.
- 5.7. Энергия и импульс электромагнитной волны. Вектор Пойнтинга.
- 5.8. Упругие волны в твердых телах. Аналогия с электромагнитными волнами.
- 5.9. Стоячие волны.
- 5.10. Эффект Допплера.
5.4. Резонансные явления в колебательном контуре. Резонанс напряжений и резонанс токов.
Как следует из приведенных формул, при частоте переменной ЭДС ω, равной
,
амплитудное значение силы тока в колебательном контуре, принимает максимальное значение
. При этом амплитуда напряжения на активном сопротивлении R также максимальна и равна UR0 =I0maxR =E0. Падения напряжения на емкости UC и индуктивности UL одинаковы по амплитуде, но противоположны по фазе, и они взаимно компенсируют друг друга. Это явление, имеющее место в последовательномколебательном контуре, изображенном на рис.16.5, называется резонансом напряжений. Векторная диаграмма, соответствующая этому случаю, показана на рис.16.7.
![]()
Рис.16.7. Векторная диаграмма при резонансе напряжений.
Максимальное значение амплитуды напряжения на конденсаторе UC0(ω) достигается при частоте
![]()
.
Резонансные кривые для UC0(ω) представлены на рис.16.8. Максимум получается тем выше и острее, чем меньше коэффициент затухания β, то есть чем меньше активное сопротивление R и больше индуктивность контура L.
Рис.16.8. Резонансные кривые UC0(ω).
Если источник переменной ЭДС подключить параллельно конденсатору, то получим колебательный контур, который называется параллельным(рис.16.9).
![]()
Рис.16.9. Параллельный колебательный RLC-контур.
В таком контуре при
наблюдается другое резонансное явление, получившее название резонанса токов. При резонансе токов токи, текущие через емкость и индуктивность одинаковы по амплитуде, но противоположны по фазе. При этом общий ток в цепи ЭДС близок к нулю, хотя токи в самом контуре могут быть очень велики. Векторная диаграмма, соответствующая этому случаю, приведена на рис.16.10.
![]()
Рис.16.10. Векторная диаграмма при резонансе токов.
Можно показать, что при резонансе токов полное сопротивление Z(ω) параллельного контура максимально и равно чисто активному сопротивлению R. Резонансная частота, при которой Z(ω) максимально, определяется из условия равенства нулю реактивной части комплексного сопротивления
:
ωL(1 — ω2LC) — ωCR2 = 0 ,
откуда
.
Резонансные кривые для амплитудных значений IC0(ω) тока, текущего через конденсатор, приведены на рис.16.11.
|
|||||||
|
|||||||
|
|||||||
Рис.16.11. Резонансные кривые IC0(ω).
Резонансные явления в колебательных контурах широко используются в электро- и радиотехнике (резонансные усилители, частотные фильтры и другие). В частности, явление резонанса используется для выделения из сложного сигнала нужной частотной составляющей. Настроив контур (путем изменения его параметров C и/или L) на одну из выбранных частот, можно получить на конденсаторе напряжение, в Q раз превышающее величину напряжения данной частотной составляющей (см. рис.16.8). Такой процесс осуществляется, например, при настройке радиоприемника на нужную длину волны.