Электричество и магнетизм. Часть 4
- Электричество и магнетизм. Часть 4
- 4.12. Вихревое электрическое поле. Первое уравнение Максвелла.
- 4.13. Второе уравнение Максвелла, третье уравнение Максвела
- 4.15. Четвертое уравнение Максвелла.
- 4.16. Дифференциальная форма уравнений Максвелла.
- 4.17. Замкнутая система уравнений Максвелла. Материальные уравнения.
- 4.18. Следствия из уравнений Максвелла. Электромагнитные волны. Скорость света.
- Колебания и волны: электромагнитные колебания
- 5.2. Свободные затухающие колебания. Добротность колебательного контура.
- 5.3. Вынужденные электрические колебания. Метод векторных диаграмм.
- 5.4. Резонансные явления в колебательном контуре. Резонанс напряжений и резонанс токов.
- 5.5. Волновое уравнение. Типы и характеристики волн.
- 5.6. Электромагнитные волны.
- 5.7. Энергия и импульс электромагнитной волны. Вектор Пойнтинга.
- 5.8. Упругие волны в твердых телах. Аналогия с электромагнитными волнами.
- 5.9. Стоячие волны.
- 5.10. Эффект Допплера.
5.9. Стоячие волны.
При наложении двух встречных волн с одинаковой амплитудой возникают стоячие волны. Возникновение стоячих волн имеет место, например, при отражении волн от преграды. Падающая на преграду волна и бегущая ей навстречу отраженная волна, налагаясь друг на друга, дают стоячую волну (рис.17.3).
Рис.17.3. Образование стоячей волны.
Стоячие волны бывают продольные (колебания стержней, звуковые волны в резонаторе музыкального инструмента) и поперечные (колебания закрепленной на концах натянутой струны, капиллярные волны на поверхности жидкости).
Рассмотрим две плоские монохроматические волны, распространяющиеся навстречу друг другу. Уравнения волн имеют вид:
,
.
Складывая эти уравнения и преобразовывая результат по формуле для суммы косинусов, получим:
.
Заменив в этом выражении волновое число k его значением , придадим ему следующий вид:
,
где — амплитуда колебаний.
Написанное уравнение — есть уравнение стоячей волны. Из него видно, что в стоячей волне колебания в каждой точке происходят с той же частотой ω, что и у налагающихся волн. При этом амплитуда колебаний зависит от координаты точки х.
В точках с координатами амплитуда колебаний максимальна и равна 2a. Эти точки называются пучностями стоячей волны.
В точках с координатами амплитуда колебаний равна нулю. Эти точки называют узлами стоячей волны.
Расстояние между соседними пучностями (узлами) составляет . Сами пучности и узлы сдвинуты относительно друг друга на четверть длины волны (рис.17.3). Фазы колебаний по разные стороны от узла отличаются на π, то есть точки, лежащие по разные стороны от узла, колеблются в противофазе, а все точки, заключенные между двумя соседними узлами, колеблются в одной фазе.
Отметим, что в стоячей волне дважды за период колебаний происходит переход кинетической энергии от узла (где скорость равна нулю) к пучности (где она максимальна) и обратно. То же происходит и с потенциальной энергией, но в обратной последовательности по отношению к кинетической энергии. В результате средний поток энергии через любое сечение в стоячей волне равен нулю.