Электричество и магнетизм. Часть 3
- Электричество и магнетизм. Часть 3
- 3.14. Описание магнитного поля в магнетиках. Напряженность и индукция магнитного поля.
- 3.15 . Классификация магнетиков.
- 3.16. Граничные условия для магнитного поля.
- Лекция 12 Основы электронной теории магнетизма.
- 3.18. Природа диамагнетизма. Теорема Лармора.
- 3.19. Парамагнетизм. Закон Кюри. Теория Ланжевена.
- 3.20. Элементы теории ферромагнетизма.
- ОСНОВЫ ЭЛЕКТРОДИНАМИКИ
- 4.2. Движение заряженной частицы в однородном постоянном электрическом поле.
- 4.3. Движение заряженной частицы в однородном постоянном магнитном поле.
- 4.4. Практические применения силы Лоренца. Эффект Холла.
- Явление электромагнитной индукции.
- 4.6. Примеры применения закона электромагнитной индукции.
- 4.7. Явление самоиндукции. Индуктивность проводников.
- 4.8. Пример вычисления индуктивности. Индуктивность соленоида.
- 4.9. Переходные процессы в электрических цепях, содержащих индуктивность.
- 4.10. Энергия магнитного поля. Плотность энергии.
3.19. Парамагнетизм. Закон Кюри. Теория Ланжевена.
Если магнитный момент атомов отличен от нуля, то вещество оказывается парамагнитным. Внешнее магнитное поле стремится установить магнитные моменты атомов вдоль в то время, как тепловое движение — разбросать их равномерно по всем направлениям. В результате устанавливается некоторая преимущественная ориентация магнитных моментов атомов вдоль поля. Пьер Кюри (Curie P., 1859-1906) экспериментально установил, что магнитная восприимчивость парамагнетика зависит от температуры согласно закону (закон Кюри):
,
где С — постоянная Кюри, зависящая от рода вещества.
Количественная теория парамагнетизма была разработана Полем Ланжевеном (Langevin P., 1872-1946) в 1905г. В упрощенном варианте (не слишком сильных магнитных полей и не слишком низких температур) суть теории Ланжевена сводится к следующему. В магнитном поле атом обладает потенциальной энергией W = — pmBcosθ, которая зависит от угла θ между векторами и . Число атомов в единице объема, магнитные моменты которых направлены в пределах телесного угла dΩ=2πsinθdθ, определяется законом распределения Больцмана:
,
где А — нормирующий множитель, определяемый из условия
Эти атомы вносят вклад в проекцию вектора намагничивания на направление внешнего магнитного поля:
,
где обозначено .
В принятом выше приближении x<<1 можно ограничиться первыми двумя членами в разложении Тогда получим:
,
откуда следует выражение для магнитной восприимчивости парамагнетика:
.
Полученное выражение совпадает с законом Кюри, причем для постоянной Кюри С имеем: .