Электричество и магнетизм. Часть 3
- Электричество и магнетизм. Часть 3
- 3.14. Описание магнитного поля в магнетиках. Напряженность и индукция магнитного поля.
- 3.15 . Классификация магнетиков.
- 3.16. Граничные условия для магнитного поля.
- Лекция 12 Основы электронной теории магнетизма.
- 3.18. Природа диамагнетизма. Теорема Лармора.
- 3.19. Парамагнетизм. Закон Кюри. Теория Ланжевена.
- 3.20. Элементы теории ферромагнетизма.
- ОСНОВЫ ЭЛЕКТРОДИНАМИКИ
- 4.2. Движение заряженной частицы в однородном постоянном электрическом поле.
- 4.3. Движение заряженной частицы в однородном постоянном магнитном поле.
- 4.4. Практические применения силы Лоренца. Эффект Холла.
- Явление электромагнитной индукции.
- 4.6. Примеры применения закона электромагнитной индукции.
- 4.7. Явление самоиндукции. Индуктивность проводников.
- 4.8. Пример вычисления индуктивности. Индуктивность соленоида.
- 4.9. Переходные процессы в электрических цепях, содержащих индуктивность.
- 4.10. Энергия магнитного поля. Плотность энергии.
4.10. Энергия магнитного поля. Плотность энергии.
В опыте, схема которого приведена на рис.14.7, после размыкания ключа через гальванометр некоторое время течет убывающий ток. Работа этого тока равна работе сторонних сил, роль которых выполняет ЭДС самоиндукции , действующая в контуре. Пусть за время dt по цепи переносится заряд dq. Работа тока самоиндукции по перемещению этого заряда есть:
.
Проинтегрировав это выражение в пределах от I до 0, получим полную работу тока:
.
Совершение этой работы сопровождается исчезновением магнитного поля, которое первоначально существовало в соленоиде и окружающем его пространстве. Остается заключить, что магнитное поле является носителем той энергии, за счет которой производится работа тока, идущая на изменение внутренней энергии проводников — их нагревание. Таким образом, проводник, имеющий индуктивность L, обладает энергией
.
Выразим эту энергию через величины, характеризующие само поле. Для этого заменим индуктивность соленоида ее выражением . Далее, замечая, что напряженность магнитного поля соленоида , приходим к формуле:
.
Полученному выражению для энергии магнитного поля можно придать другой вид, если учесть, что :
Плотность энергии магнитного поля получим, поделив это выражение на объем V, занятый полем:
Если магнитное поле неоднородно, то чтобы найти энергию поля в некотором объеме V , нужно вычислить интеграл:
.
- << Назад
- Вперёд