Электричество и магнетизм. Часть 3
- Электричество и магнетизм. Часть 3
- 3.14. Описание магнитного поля в магнетиках. Напряженность и индукция магнитного поля.
- 3.15 . Классификация магнетиков.
- 3.16. Граничные условия для магнитного поля.
- Лекция 12 Основы электронной теории магнетизма.
- 3.18. Природа диамагнетизма. Теорема Лармора.
- 3.19. Парамагнетизм. Закон Кюри. Теория Ланжевена.
- 3.20. Элементы теории ферромагнетизма.
- ОСНОВЫ ЭЛЕКТРОДИНАМИКИ
- 4.2. Движение заряженной частицы в однородном постоянном электрическом поле.
- 4.3. Движение заряженной частицы в однородном постоянном магнитном поле.
- 4.4. Практические применения силы Лоренца. Эффект Холла.
- Явление электромагнитной индукции.
- 4.6. Примеры применения закона электромагнитной индукции.
- 4.7. Явление самоиндукции. Индуктивность проводников.
- 4.8. Пример вычисления индуктивности. Индуктивность соленоида.
- 4.9. Переходные процессы в электрических цепях, содержащих индуктивность.
- 4.10. Энергия магнитного поля. Плотность энергии.
4.3. Движение заряженной частицы в однородном постоянном магнитном поле.
В данном случае и сила Лоренца имеет только магнитную составляющую . Уравнением движения частицы, записанном в декартовой системе координат, в этом случае является:
.
Рассмотрим сначала случай, когда частица влетает под прямым углом к силовым линиям магнитного поля (рис.13.3).
Рис.13.3.Движение заряженной частицы в магнитном поле ().
В системе координат, показанной на рис.13.3, , , и уравнение движения принимает вид:
,
откуда следует, что вектор полного ускорения частицы лежит в плоскости, перпендикулярной вектору . Легко убедиться также в том, что вектор ускорения перпендикулярен вектору скорости частицы и составляет вместе с вектором правую тройку векторов (как и должно быть по свойствам силы Лоренца). Действительно,
.
Таким образом, ускорение частицы в каждый момент времени t направлено к центру кривизны траектории и играет роль нормального (центростремительного) ускорения. Модуль ускорения равен:
.
Траекторией движения является окружность, радиус R которой находим из условия: , то есть , откуда:
.
Период обращения частицы
Отметим, что период обращения и соответственно угловая скорость движения частицы не зависят от линейной скорости .
Рассмотрим теперь случай, когда частица влетает под углом αк силовым линиям магнитного поля (рис.13.4).
|
Рис.13.4. Общий случай движения заряженной частицы в однородном магнитном поле.
Разложим вектор скорости на две составляющие: — параллельную вектору и — перпендикулярную . Поскольку составляющая силы Лоренца в направлении равна нулю, она не может повлиять на величину . Что касается составляющей , то этот случай был рассмотрен выше. Таким образом, движение частицы можно представить как наложение двух движений: одного — равномерного перемещения вдоль направления силовых линий поля со скоростью , второго — равномерного вращения в плоскости, перпендикулярной . В итоге траекторией движения будет винтовая линия (рис.13.4).
Шаг винтовой линии определяется по формуле:
, где .
Радиус витка находим по формуле:
Направление, в котором закручивается винтовая линия, зависит от знака заряда частицы. Если заряд частицы положительный, то винтовая линия закручивается против часовой стрелки, если смотреть вдоль направления , и наоборот — по часовой стрелке, если заряд частицы отрицательный.