Лекции по метрологии. Часть 3: Средства измерений

 Измерительные преобразователи

Согласно ГОСТ 16263 — 70  измерительный преобразователь — это средство измерений, предназначенное для выработки сигнала из­мерительной информации в форме, удобной для передачи, дальней­шего преобразования, обработки и (или) хранения, но не поддаю­щейся непосредственному восприятию наблюдателем. Принцип их действия основан на различных физических явлениях. Измерительные преобразователи преобразуют любые физические величины х (электрические, неэлектрические, магнитные) в выходной электрический сигнал Y = f(х).

Измерительные преобразователи являются составными частями измерительных приборов, установок и систем. Измерительные преобразователи можно классифицировать по характеру входной и выходной величин, месту в измерительной цепи, физическим явлениям, положенным в их принцип действия, и другим признакам (рис. 3.3).

Физические величины могут быть непрерывными по значению и квантованными (они представляются обычно кодовыми сигналами). Если входная и выходная величины измерительного преобразователя — непрерывные величины, такой преобразователь называют — аналоговым. Измерительный преобразователи одного кодового сигнала в другой  получили название кодовых. Преобразователи аналог-код превращают непрерывную величину в кодовый сигнал, а преобразователи код-аналог  -  кодовый сигнал в сигнал, непрерывный по значению (например, преобразователь двоичного числа в постоянное напряжение).

 
  clip_image005clip_image006clip_image007

 


 

По месту, занимаемому в измерительной цепи, средства изме­рения, преобразователи подразделяются на первичные, переда­ющие, промежуточные, выходные и обратные.

Первичный преобразователь — это преобразователь, к которо­му подведена измеряемая величина. Для первичных преобразова­телей характерно то, что на них воздействует непосредственно из­меряемая величина. Физическая величина, в которую преобразует измеряемую величину первичный преобразователь, может быть подведена к измерительному механизму, может быть подана на другой преобразователь или использована, например, для целей телеизмерений.

Примером первичного преобразователя может служить термопара в цепи термоэлектрического термометра.

Конструктивно обособленный первичный измерительный преобразователь, от которого поступают сигналы измерительной информации, называется датчиком [3].

Датчик может быть вынесен на значительное расстояние от средства измерений, принимающего его сигналы. Например, датчики запущенного метеорологического радиозонда передают измерительную информацию о температуре, давлении, влажности и других параметрах атмосферы; тензопреобразователь, наклеенный на упругий элемент и воспринимающий его деформацию, также является датчиком [8].

Передающий преобразователь — измерительный преобразова­тель, служащий для дистанционной передачи измерительной ин­формации. Для этих преобразователей характерно назначение ве­личины, образуемой на его «выходе». Очевидно, что преобразова­тель может одновременно выполнять функции первичного и передающего.

Промежуточный преобразователь — преобразователь, занимаю­щий в измерительной цепи место после первичного.

Выходной преобразователь — преобразователь,  стоящий последним в измерительной цепи. Он снабжается отсчетным или регистрирующим устройством, фиксирующим значение измеряемой величины.

Измерительные приборы сравнения (см. п. 3.4) имеют две цепи — прямого преобразования, начиная от входной величины, и обратного преобразования — к входной величине. Измерительные преобразователи, стоящие в цепи обратного преобразования, получили название обратных.

Для изменения в определенное число раз значения одной из величин, действующих в измерительной цепи, без изменения ее физической природы используют масштабные преобразователи: делители напряжения, измерительные трансформаторы тока, измерительные усилители и т. п.

Полезно также все измерительные преобразователи разделить на две группы: генераторные (энергетические) и параметрические. Первые характеризуются тем, что для осуществления преобразования не требуется постороннего источника энергии. Измерительный преобразователь её вырабатывает сам за счет воздействия преобразуемой величины. Параметрические же преобразователи должны быть возбуждены от постороннего источника энергии. Например, преобразователь в виде термопары для измерения температуры сам вырабатывает электрическую энергию, а термометр сопротивления (нагреваемая проволока) может осуществлять преобразование температуры в сопротивление только будучи нагретым источником электрического тока.

Измерительные преобразователи могут быть встроены в корпус прибора и вместе с другими его устройствами образовать единую конструкцию. В этом случае метрологические характеристики нор­мируются для измерительного прибора в целом. В тех случаях, когда измерительные преобразователи (один или несколько) яв­ляются конструктивно обособленными элементами, метрологиче­ские характеристики нормируются на эти элементы. Это очень важно при построении измерительных средств на базе блочно-модульного принципа, при построении измерительных установок и систем, которые могут включать десятки различных измерительных преобразователей.

Измерительные преобразователи бывают взаимозаменяемыми, ограниченно-взаимозаменяемыми и невзаимозаменяемыми или ин­дивидуальными.

Взаимозаменяемые преобразователи могут без каких-либо ограничений заменять друг друга. При такой замене свойства при­бора не должны измениться. Для того чтобы обеспечивалась та­кая взаимозаменяемость, нормируют ряд характеристик преобра­зователей. Для них устанавливают и стандартизуют рациональный ряд коэффициентов преобразования. Под коэффициентом преобра­зования понимается отношение значения величины на входе преоб­разователя к значению соответствующей ей величины на выходе.

Важные характеристики взаимозаменяемых преобразователей следующие: — значение входной и выходной величин каждой в отдельности. Так, напри-

мер, государственными стандартами устанавливаются следующие диапазоны изменения входных и выходных величин: сила постоянного электрического тока I= = 0…5 мA; 0…20 мA, постоянное напряжение U= = 0…10 В, переменное напряжение U~ = 0…2 В, частота электрических колебаний  f = 1500…2500 Гц;  4000…8000 Гц [8]. Установление определенного ряда этих значений и обеспечивает широкую взаимозаменяемость преобразователей. Благодаря уста­новлению таких рядов значительно сокращается количество раз­новидностей первичных преобразователей и вторичных устройств (конструктивно обособленная остальная часть элементов измери­тельной цепи).

- точность и постоянство коэффициента преобразования на всем диапазоне его работы.

Для большинства взаимозаменяемых преобразователей уста­навливают классы точности. При выборе преобразователя стремятся к тому, чтобы его класс точности, если это возможно, был выше класса точности измерительного прибора, применяемого с преоб­разователем, иначе говоря, чтобы применение преобразователя как можно меньше снижало общую точность измерения данным при­бором.

Требования, предъявляемые к взаимозаменяемым преобразова­телям, весьма высоки. В ряде случаев некоторые из них невыпол­нимы или выполнение их экономически нецелесообразно. Тогда их применяют ограниченно, причем ограничение накладывают на ка­кое-либо одно требование.

Чаще всего взаимозаменяемые преобразователи используют только для измерительного прибора одного вида или типа, а иногда даже только одной его конструкции, о чем на преобразователе делается соответствующая надпись.

Применение индивидуальных (невзаимозаменяемых) преобра­зователей позволяет улучшить метрологические характеристики  измерительного прибора и установки за счет специальных регули­ровок.

 

  

Вы здесь: Главная Метрология Лекции по метрологии. Часть 3: Средства измерений