Физиология человека (часть 2)
Жизненный цикл эритроцитов включает в себя три периода:
1) Период созревания эритроцитов — эритропоэз.
2) Период, связанный с нахождением эритроцитов в кровяном русле и выполнением ими транспортной функции.
3) Разрушение эритроцитов — эритродиэрез.
Созревание эритроцитов – эритропоэз — происходит в клетках красного костного мозга, который находится в плоских и трубчатых костях (грудина, ребра, позвоночный столб, эпифиз трубчатых костей, череп). По теории Максимова, источником эритроцитов является единая материнская клетка, из которой образуются все клетки крови, причем в костном мозге одни клетки подвергаются пролиферации, т. е. размножаются, восполняя свои запасы, резервы в костном мозге, а другая группа клеток -дифференцируется, превращаясь в красные клетки крови — эритроциты. Чтобы развитие клеток шло по красному — эритроцитарному — ряду, необходимо наличие особого специфичного гормона-индуктора — эритропоэтина.
Рассмотрим процесс созревания эритроцитов — эритропоэз. Материнская клетка костного мозга получила название стволовой клетки. За стволовой клеткой идет клетка- предшественница, затем эритропоэтинчувствительная клетка, на которую воздействует эритропоэтин через специальные рецепторы. Без эритропоэтина эритроциты не образуются. Теперь дженерик виагры можно купить анонимно с курьерской доставкой.
По мере роста эритропоэтин-чувствительная клетка превращается в эритробласт. В этом типе клеток появляются первые глыбки гемоглобина. Эритробласт переходит в пронормоцит, пронормоцит — внормоцит. Нормоциты существуют в виде базофильных, полихроматофильных, оксифильных формах, в зависимости от степени окрашивания основными или кислыми красками. Нормоцит переходит вретикулоцит, у которого вместо ядра обнаруживается особая сетчатая структура. Поэтому, этот вид клеток получил название ретикулоцит, он занимает промежуточное место между ядерной и безъядерной формами эритроцитов.
Ретикулоцит превращается в эритроцит. После первичной дифференцировки и становления эритроидного ряда с красными клетками происходит ряд трансформаций, в результате которых клетки теряют ядра, митохондрии и другие цитоплазматические органеллы. Одновременно происходит увеличение синтеза гемоглобина в общем балансе синтеза белков. Кроме того, эритроциты приобретают характерную двояковогнутую форму, уменьшаются в размерах и выходят в кровяное русло (рис. 1.2.).
Такой тип кроветворения получил название нормобластического. В перифе-рической крови можно обнаружить только две последние формы эритроцитов, причем на долю ретикулоцитов может приходится не более 0,5-1%, то есть не более 10 ретикулоцитов на 1000 эритроцитов. Если в периферической крови появляются ядерные формы эритроцита, это свидетельствует о какой-то патологии, чаще всего, системы крови.
Зрелые эритроциты выбрасываются из клеток костного мозга в сосудистое русло с помощью электрического поля. Этот своеобразный вид транспорта получил название “экструзия”.
Затем начинается второй период жизненного цикла эритроцитов — выполнение транспортной функции. Как известно, время жизни эритроцитов в кровяном русле ограничено — 100-120 дней, что вероятно генетически обусловлено для каждого вида.
В процессе выполнения своей основной физиологической функции эритроциты “стареют” и затем разрушаются (эритродиэрез). Исследование процесса старения эритроцитов обнаружило многочисленные изменения в них. Так, при старении эритроцитов уменьшается гликолитическая активность, снижается содержание катионов К+, в мембране старых эритроцитов содержится меньше фосфолипидов, чем в мембране молодых эритроцитов. При старении уменьшается объем эритроцитов, их удельный вес, кислотная стойкость, изменяется величина поверхностного заряда. До настоящего времени не ясно, что является определяющим в разрушении эритроцитов: структурные ли изменения или изменение метаболизма? Не существует четкого представления о механизме деструкции эритроцитов. Распространенным является мнение, что уменьшение содержания АТФ в красных клетках крови приводит к сферуляции эритроцитов и к разрушению сфероцитов ретикулярной системой. Возможно, что деструкция эритроцитов зависит от нескольких факторов. Около 10% эритроцитов разрушается в сосудах, при этом имеет место механический тип гемолиза, то есть, клетки, ударяясь друг о друга или о стенки сосуда, подвергаются гемолизу.
90% эритроцитов разрушаются путем гемолиза в клетках ретикулярной системы, которая обладает способностью захватывать эритроциты и подвергать их разрушению. Эта ретикулярная ткань имеется практически во всех органах и тканях: в коже, подкожно-жировой клетчатке, наибольшие ее скопления обнаруживаются в селезенки и печени. Поэтому основная масса эритроцитов подвергается гемолизу именно в этих органах. Иногда селезенку образно называют “кладбищем эритроцитов”.
По теории Кейхеима в клетках-ловушках ретикулярной системы имеется специальный рецепторный аппарат, благодаря которому они способны узнавать размеры, массу, форму, заряд эритроцита. Не старая клетка беспроблемно преодолевает “ловушку”, старые эритроциты подвергаются разрушению. Таким путем клетки-ловушки ретикулярной системы и “вылавливают” старые эритроциты из всего объема, подвергая разрушению.
При разрушении эритроцита из него выходит Нв и все дальнейшие разрушения связаны с различными превращениями Нв. Сначала от Нв отщепляется железо, которое используется организмом для образования новых эритроцитов, синтеза некоторых ферментов и других процессов. Оставшаяся часть молекулы Нв, лишившейся железа, получила название гематопорфирин. Гематопорфирин претерпевает ряд изменений с образованием таких форм, как холиглобин, вердеглобин, … . Затем, как правило, в печени от Нв отщепляется его белковая часть — глобин, гидролизующаяся до аминокислот, которые также используется организмом, удовлетворяя энергетические и пластические потребности. Оставшаяся часть гема без железа и глобина называется биливердин — промежуточный продукт распада гема, являющийся желчным пигментом зеленоватого цвета. Затем биливердин переходит в следующий пигмент - билирубин, имеющий желтовато-красноватый цвет. Билирубин попадает в печень, где переводится в менее токсичное и более растворимое в воде соединение благодаря присоединению к себе глюкуроновой кислоты. Коньюгат билирубина и двух молекул глюкуроната, называется или прямым или связанным билирубином, который транспортируется вначале в желчь, потом по желчным путям в кишечник.
В кишечники коньюгаты билирубина гидролизуются и в результате действия бактериальной флоры билирубин превращается в уробилиноген (мезауробилиноген). Уробилиноген затем переходит в уробилин(мезауробилин). Часть уробилина выделяется с каловыми массами в виде стеркобилиногена, который окисляется до стеркобилина. Однако, основная уробилина часть подвергается обратному всасыванию тонком кишечнике и по портальной системе поступает в печень. Печень разрушает уробилин до декапирролов. Кроме того, часть уробилина в нижней трети толстого кишечника попадает в систему нижней полой вены, затем переносится в почки и выделяется с мочой. Ежедневно здоровый человек выделяет около 10-15 мг желчных пигментов с мочой.
Возникает вопрос “Зачем нужно знать схему пигментного обмена?”. Пигментный обмен необходимо знать врачу для правильного установления вида желтухи. Накопление желчных пигментов в плазме крови в достаточных количествах придает желтушную окраску коже и слизистых. При всех видах желтух исследуются пигменты кала, мочи и крови. Причем каждая форма желтухи характеризуется специфическими нарушениями пигментного обмена (гемолитическая, механическая и паренхиматозная). Находящиеся в сыворотке крови коньюгаты билирубина с белками плазмы образуют непрямой, свободный билирубин.