Информационная безопасность. Лекция 8: Симметричные алгоритмы шифрования
Симметричные алгоритмы шифрования
Алгоритм DES
Алгоритм DES (Data Encryption Standard) — федеральный стандарт США, на котором основан международный стандарт ISO 8372-87. DES был поддержан Американским национальным институтом стандартов (ANSI) и рекомендован для применения Американской ассоциацией банков (ABA). DES предусматривает 4 режима работы:
- ECB (Electronic Codebook) электронная кодовая книга;
- CBC (Cipher Block Chaining) цепочка блоков;
- CFB (Cipher Feedback) обратная связь по шифртексту;
- OFB (Output Feedback) обратная связь по выходу.
ECB — Electronic Codebook (электронная кодовая книга) — каждый блок из 64 битов незашифрованного текста шифруется независимо от остальных блоков, с применением одного и того же ключа шифрования. Типичные приложения — безопасная передача одиночных значений (например, криптографического ключа). Данный режим является самым простым режимом, при котором незашифрованный текст обрабатывается последовательно, блок за блоком. Каждый блок шифруется, используя один и тот же ключ. Если сообщение длиннее, чем длина блока соответствующего алгоритма, то оно разбивается на блоки соответствующей длины, причем последний блок дополняется в случае необходимости фиксированными значениями. При использовании данного режима одинаковые незашифрованные блоки будут преобразованы в одинаковые зашифрованные блоки.
ECB-режим идеален для небольшого количества данных, например, для шифрования ключа сессии.
Существенным недостатком ECB является то, что один и тот же блок незашифрованного текста, появляющийся более одного раза в сообщении, всегда имеет один и тот же зашифрованный вид. Вследствие этого для больших сообщений ECB режим считается небезопасным. Если сообщение имеет много одинаковых блоков, то при криптоанализе данная закономерность будет обнаружена.
CBC — Cipher Block Chaining (цепочка блоков) — вход криптографического алгоритма является результатом применения операции XOR к следующему блоку незашифрованного текста и предыдущему блоку зашифрованного текста. Типичные приложения — общая блокоориентированная передача, аутентификация.
Для получения первого блока зашифрованного сообщения используется инициализационный вектор (Co), для которого выполняется операция XOR с первым блоком незашифрованного сообщения. Co должен быть известен как отправителю, так и получателю. Для максимальной безопасности Co должен быть защищен так же, как ключ.
Рис. 1. Схема режима CBC.
CFB — Cipher Feedback (обратная связь по шифртексту). Как и в режиме CBC, используется операция XOR для предыдущего блока зашифрованного текста и следующего блока незашифрованного текста. Таким образом, любой блок зашифрованного текста является функцией от всего предыдущего незашифрованного текста. Входом функции шифрования является регистр сдвига, который первоначально устанавливается в инициализационный вектор Co. Для выхода алгоритма выполняется операция XOR с незашифрованным текстом M1 для получения первого блока зашифрованного текста С1.
OFB — Output Feedback (обратная связь по выходу) — аналогичен CFB, за исключением того, что на вход алгоритма при шифровании следующего блока подается результат шифрования предыдущего блока; только после этого выполняется операция XOR с незашифрованным текстом. Типичные приложения — потокоориентированная передача по зашумленному каналу (например, спутниковая связь).
Основное преимущество режима OFB состоит в том, что если при передаче произошла ошибка, то она не распространяется на следующие зашифрованные блоки, и тем самым сохраняется возможность дешифрования последующих блоков. Например, если появляется ошибочный бит в Сi, то это приведет только к невозможности дешифрования этого блока и получения Mi. Дальнейшая последовательность блоков будет расшифрована корректно. При использовании режима CFB Сi подается в качестве входа в регистр и, следовательно, является причиной последующего искажения потока.
Рис. 3. Схема режима OFB.
Недостаток OFB в том, что он более уязвим к атакам модификации потока сообщений, чем CFB.
DES является классической сетью Фейстеля с двумя ветвями. Данные шифруются 64-битными блоками, используя 56-битный ключ. Алгоритм преобразует за несколько раундов 64-битный вход в 64-битный выход. Процесс шифрования состоит из четырех этапов. На первом из них выполняется начальная перестановка (IP) 64-битного исходного текста (забеливание), во время которой биты переупорядочиваются в соответствии со
Рис. 4. Общая схема DES
стандартной таблицей. Следующий этап состоит из 16 раундов одной и той же функции, которая использует операции сдвига и подстановки. На третьем этапе левая и правая половины выхода последней (16-й) итерации меняются местами. Наконец, на четвертом этапе выполняется перестановка IP-1 результата, полученного на третьем этапе. Перестановка IP-1 инверсна начальной перестановке.
Рис.5. Схема раунда алгоритма DES.
В алгоритме DES существует 8, так называемых, S-боксов. На вход каждого блока Si поступает 6 бит, а на выходе получается 4 бита. 6 бит на входе получается за счет расширения тетрад путем добавления к ним добавочных — начального и конечного битов от соседних соответствующих тетрад. Затем то значение складывается по модулю два со значением Ki, полученным на основании ключа. Этот 48-битовый результат подается на S-боксы. Первый и шестой бит на входе Si отвечают за выбор соответствующей строки в соответствующей таблице Si, а средние четыре бита — за выбор колонки. На их пересечении находится выходное значение соответствующего Si. Например, если Siвх = 0 1010 1, тогда значение строки будет 01(1), значение столбца — 1010(10), Siвых =1100(12) в соответствии с приведенной ниже таблицей.
|
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
0 |
14 |
4 |
13 |
1 |
2 |
15 |
11 |
8 |
3 |
10 |
6 |
12 |
5 |
9 |
0 |
7 |
1 |
0 |
15 |
7 |
4 |
14 |
2 |
13 |
1 |
10 |
6 |
12 |
11 |
9 |
5 |
3 |
8 |
2 |
4 |
1 |
14 |
8 |
13 |
6 |
2 |
11 |
15 |
12 |
9 |
7 |
3 |
10 |
5 |
0 |
3 |
15 |
12 |
8 |
2 |
4 |
9 |
1 |
7 |
5 |
11 |
3 |
14 |
10 |
0 |
6 |
13 |
Так как длина ключа равна 56 битам, существует 256 возможных ключей. На сегодня такая длина ключа недостаточна, поскольку допускает успешное применение лобовых атак. Простейший способ увеличить длину ключа состоит в повторном применении DES с двумя разными ключами. Используя незашифрованное сообщение P и два ключа K1 и K2, зашифрованное сообщение С можно получить следующим образом:
C = Ek2 [Ek1 [P]]
Для дешифрования требуется, чтобы два ключа применялись в обратном порядке:
P = Dk1 [Dk2 [C]]
В этом случае длина ключа равна 56 * 2 = 112 бит.
Тройной DES с двумя ключами
В этом случае выполняется последовательность зашифрование-расшифрование-зашифрование (EDE):
C = EK1 [DK2 [EK1 [P]]]
Рис. 6. Шифрование тройным DES
Не имеет большого значения, что используется на второй стадии: шифрование или дешифрование. В случае использования дешифрования существует только то преимущество, что можно тройной DES свести к обычному одиночному DES, используя K1 = K2:
C = EK1 [DK1 [EK1 [P]]] = EK1 [P]
Тройной DES является достаточно популярной альтернативой DES и используется при управлении ключами в стандартах ANSI X9.17 и ISO 8732 и в PEM (Privacy Enhanced Mail). Известных криптографических атак на тройной DES не существует. Цена подбора ключа в тройном DES равна 2112.
- Prev
- Вперёд >>