Строение растительной клетки — Пластиды

Пластиды –органеллы, характерные только для растений. Различают три типа пластид: 1) хлоропласты (пластиды зеленого цвета); 2) хромопласты (пластиды желтого, оранжевого или красного цвета) и лейкопласты (бесцветные пластиды). Обычно в клетке встречаются пластиды только одного типа.

Хлоропласты имеют наибольшее значение, в них протекает фотосинтез. Они содержат зеленый пигмент хлорофилл, придающий растениям зеленый цвет, и пигменты, относящиеся к группе каротиноидов. Каротиноиды имеют окраску от желтой и оранжевой до красной и коричневой, но обычно она маскируется хлорофиллом. Каротиноиды делят на каротины, имеющие оранжевую окраску, и ксантофиллы, имеющие желтую окраску. Это липофильные (жирорастворимые) пигменты, по химической структуре они относятся к терпеноидам.

Хлоропласты растений имеют форму двояковыпуклой линзы и размеры 4-7 мкм, они хорошо видны в световой микроскоп. Число хлоропластов в фотосинтезирующих клетках может достигать 40-50. У водорослей роль фотосинтетического аппарата выполняют хроматофоры. Их форма разнообразна: чашевидная (хламидомонада), лентовидная (спирогира), пластинчатая (пиннулярия) и др. Хроматофоры значительно крупнее, число их в клетке — от 1 до 5.

Хлоропласты имеют сложное строение. От гиалоплазмы они отграничены двумя мембранами — наружной и внутренней. Внутреннее содержимое называется строма. Внутренняя мембрана формирует внутри хлоропласта сложную, строго упорядоченную систему мембран, имеющих форму плоских пузырьков, называемых тилакоидами. Тилакоиды собраны в стопки — граны, напоминающие столбики монет. Граны связаны между собой тилакоидами стромы (межгранными тилакоидами), проходящими через них насквозь вдоль пластиды (рис. 2.5 ). Хлорофиллы и каротиноиды встроены в мембраны тилакоидов гран. В строме хлоропластов находятся пластоглобулы — сферические включения жирных масел, в которых растворены каротиноиды, а также рибосомы, сходные по величине с рибосомами прокариот и митохондрий, и нити ДНК. Часто в хлоропластах встречаются крахмальные зерна, это так называемый первичный, или ассимиляционный крахмал — временное хранилище продуктов фотосинтеза.

clip_image009

Рис. 2.5. Схема строения хлоропласта в трехмерном изображении (1) и на срезе (2): Вм — внутренняя мембрана; Гр — грана; ДНК — нить пластидной ДНК; НМ — наружная мембрана; Пг — пластоглобула; Р — рибосомы хлоропласта; С — строма; ТиГ — тилакоид граны; ТиМ — межгранный тилакоид.

Хлорофилл и хлоропласты образуются только на свету. Растения, выращенные в темноте, не имеют зеленой окраски и называются этиолированными. Вместо типичных хлоропластов в них образуются измененные пластиды, не имеющие развитой внутренней мембранной системы, — этиопласты.

Основная функция хлоропластов — фотосинтез, образование органических веществ из неорганических за счет энергии света. Центральная роль в этом процессе принадлежит хлорофиллу. Он поглощает энергию света и направляет ее на осуществление реакций фотосинтеза. Эти реакции подразделяются на светозависимые и темновые (не требующие присутствия света). Светозависимые реакции состоят в преобразовании световой энергии в химическую и разложении (фотолизе) воды. Они приурочены к мембранам тилакоидов. Темновые реакции — восстановление углекислого газа воздуха водородом воды до углеводов (фиксация СО2) — протекают в строме хлоропластов.

В хлоропластах, как и в митохондриях, происходит синтез АТФ. В этом случае источником энергии служит солнечный свет, поэтому его называют фотофосфорилированием. Хлоропласты участвуют также в синтезе аминокислот и жирных кислот, служат хранилищем временных запасов крахмала.

Наличие ДНК и рибосом указывает, как и в случае митохондрий, на существование в хлоропластах своей собственной белоксинтезирующей системы. Действительно, большинство белков мембран тилакоидов синтезируется на рибосомах хлоропластов, тогда как основное число белков стромы и липиды мембран имеют внепластидное происхождение.

Лейкопласты — мелкие бесцветные пластиды. Они встречаются в основном в клетках органов, скрытых от солнечного света, таких как корни, корневища, клубни, семена. Строение их в общих чертах сходно со строением хлоропластов: оболочка из двух мембран, строма, рибосомы, нити ДНК, пластоглобулы аналогичны таковым хлоропластов. Однако, в отличие от хлоропластов, у лейкопластов слабо развита внутренняя мембранная система.

Лейкопласты — это органеллы, связанные с синтезом и накоплением запасных питательных веществ, в первую очередь крахмала, редко белков и липидов. Лейкопласты, накапливающие крахмал, называются амилопластами. Этот крахмал имеет вид зерен, в отличие от ассимиляционного крахмала хлоропластов, он называется запасным, или вторичным. Запасной белок может откладываться в форме кристаллов или аморфных включений в так называемых протеинопластах, жирные масла — в виде пластоглобул в элайопластах.

Часто в клетках встречаются лейкопласты, не накапливающие запасные питательные вещества, их роль еще до конца не выяснена. На свету лейкопласты могут превращаться в хлоропласты.

Хромопласты — пластиды оранжевого, красного и желтого цвета, который обусловлен пигментами, относящимися к группе каротиноидов. Хромопласты встречаются в клетках лепестков многих растений (ноготки, лютик, одуванчик), зрелых плодов (томат, шиповник, рябина, тыква, арбуз), редко — корнеплодов (морковь), а также в осенних листьях.

Внутренняя мембранная система в хромопластах, как правило, отсутствует. Каротиноиды чаще всего растворены в жирных маслах пластоглобул (рис. 2.6), и хромопласты имеют более или менее сферическую форму. В некоторых случаях (корнеплоды моркови, плоды арбуза) каротиноиды откладываются в виде кристаллов различной формы. Кристалл растягивает мембраны хромопласта, и он принимает его форму: зубчатую, игловидную, серповидную, пластинчатую, треугольную, ромбовидную и др.

clip_image010

Рис. 2.6. Хромопласт клетки мезофилла лепестка лютика: ВМ — внутренняя мембрана; НМ — наружная мембрана; Пг — пластоглобула; С — строма.

Значение хромопластов до конца еще не выяснено. Большинство из них представляют собой стареющие пластиды. Они, как правило, развиваются из хлоропластов, при этом в пластидах разрушаются хлорофилл и внутренняя мембранная структура, и накапливаются каротиноиды. Это происходит при созревании плодов и пожелтении листьев осенью. Косвенное биологическое значение хромопластов состоит в том, что они обусловливают яркую окраску цветков и плодов, привлекающую насекомых для перекрестного опыления и других животных для распространения плодов. В хромопласты могут превращаться и лейкопласты.

Пластиды всех трех типов образуются из пропластид — мелких бесцветных телец, которые находятся в меристематических (делящихся) клетках корней и побегов. Пропластиды способны делиться и по мере дифференциации превращаются в пластиды разного типа.

В эволюционном смысле первичным, исходным типом пластид являются хлоропласты, из которых произошли пластиды остальных двух типов. В процессе индивидуального развития (онтогенеза) почти все типы пластид могут превращаться друг в друга.

Пластиды имеют много общих черт с митохондриями, отличающих их от других компонентов цитоплазмы. Это, прежде всего, оболочка из двух мембран и относительная генетическая автономность, обусловленная наличием собственных рибосом и ДНК. Такое своеобразие органелл легло в основу представления, что предшественниками пластид и митохондрий были бактерии, которые в процессе эволюции оказались встроенными в эукариотическую клетку и постепенно превратились в хлоропласты и митохондрии.

Вы здесь: Главная Биология Ботаника Строение растительной клетки