Лекция по основам охраны труда для электротехнических специальностей. Часть 2
- Лекция по основам охраны труда для электротехнических специальностей. Часть 2
- 5.2 Гигиеническое нормирование производственного микроклимата
- 5.3 Способы нормализации микроклимата производственных помещений
- 5.4 Вентиляция производственных помещений
- 5.5 Производственное освещение
- 5.5.2 Виды производственного освещения и его нормирование
- 5.5.3 Методы расчёта искусственного освещения
- 5. 6 Защита от шума и вибрации
- 5.6.2 Средства и методы защиты от шума
- 5.6.3 Ультразвук и инфразвук, их действие на организм человека и гигиеническое нормирование
- 5.6.4 Вибрация, её действие на организм человека и гигиеническое нормирование
- 5.6.5 Обеспечение вибробезопасных условий труда
- 6 ЭЛЕКТРОБЕЗОПАСНОСТЬ
- 6.2 Опасность трехфазных электрических цепей с изолированной нейтралью.
- 6.3 Опасность трехфазных электрических сетей с заземленной нейтралью
- 6.4 Опасность сетей однофазного тока.
- 6.5 Растекание тока в грунте.
- 6. 6 Опасности автоматизированных процессов
- 6.7 Обеспечение электробезопасности
- 6.8 Электрозащитные средства и предохранительные приспособления
- 6.9 Оказание первой доврачебной помощи пораженному электрическим током
Электробезопасность на производстве обеспечивается соответствующей конструкцией электроустановок; применением технических способов и средств защиты; организационными и техническими мероприятиями (ГОСТ 12.1.009-76).
Конструкция электроустановок должна соответствовать условиям их эксплуатации и обеспечивать защиту персонала от соприкосновения с токоведущими и движущимися частями, а оборудования — от попадания внутрь посторонних твердых тел и воды.
Основными техническими способами и средствами защиты от поражения электрическим током, — используемыми отдельно или в сочетании друг с другом, являются: защитное заземление; зануление; выравнивание потенциалов ; малое напряжение; электрическое разделение сетей; защитное отключение; изоляция токоведущих частей (рабочая, дополнительная, усиленная, двойная); компенсация токов замыкания на землю; оградительные устройства; предупредительная сигнализация, блокировка, знаки безопасности; изолирующие защитные и предохранительные приспособления.
Наиболее распространенными техническими средствами защиты являются защитное заземление и зануление.
Защитным заземлением называется преднамеренное электрическое соединение с землей или ее эквивалентом металлических нетоковедущих частей, которые могут оказаться под напряжением (ГОСТ 12.1.009-76). Защитному заземлению или занулению подлежат металлические части электроустановок, доступные для прикосновения человека и не имеющие других видов защиты, обеспечивающих электробезопасность. Защитное заземление или зануление выполняют: во всех случаях при переменном номинальном напряжении 380 В и выше и постоянном напряжении 440 В и выше; в помещениях с повышенной опасностью, особо опасных и в наружных установках при номинальном переменном напряжении от 42 до 380 В и постоянном — 110...440 В. Таким образом, электроустановки напряжением до 42 В переменного и до ПО В постоянного тока не требуют защитного заземления и зануления. за исключением некоторых случаев, специально оговариваемых ПУЭ.
Областью применения защитного заземления являются трехфазные трехпроводные сети напряжением до 1000 В с изолированной нейтралью и сети напряжением выше 1000 В с любым режимом нейтрали (рис. 31, а, б).
Заземляющее устройство состоит из заземлителя (одного или нескольких металлических элементов, погруженных на определенную глубину в грунт) и заземляющих проводников, соединяющих заземляемое оборудование с заземлителем. В зависимости от расположения заземлителей относительно заземляемого оборудования заземляющие устройства делятся на выносные и контурные. Заземлители выносного заземляющего устройства располагаются на некотором удалении от заземляемого оборудования. Контурное заземляющее устройство, заземлители которого располагают по контуру вокруг заземляемого оборудования на небольшом расстоянии друг от друга (несколько метров), обеспечивает лучшую степень защиты.
Основным элементом заземляющего устройства являются заземлители, которые бывают естественными и искусственными. Естественными заземлителями могут быть находящиеся в земле электропроводящие (металлические и железобетонные) части коммуникаций и других сооружений.
Чтобы защитить человека от поражения электрическим током, защитное заземление должно удовлетворять ряду требований, изложенных в ПУЭ и ГОСТ 12.1.030 — 81 «ССБТ. Электробезопасность. Защитное заземление. Зануление». Эти требования
Рис. 31. Принципиальная схема защитного заземления:
а - в сети с изолированной нейтралью до 1000 В и выше; б — в сети с заземленной нейтралью выше 1000 В; 1 — заземляемое оборудование; 2 - заземлитель защитного заземления: 3 — заземлитель рабочего заземления (заземления нейтрали источника тока)
зависят от напряжения электроустановок и мощности источника питания.
В электроустановках переменного тока напряжением до 1000 В в сети с изолированной нейтралью или изолированным выводом источника однофазного тока сопротивление заземляющего устройства не должно превышать 4 Ом. Если мощность источника питания (трансформаторов, генераторов) составляет менее 100 кВА, то сопротивление заземляющего устройства может достигать 10 Ом, но не более.
Занулением называется преднамеренное электрическое соединение с нулевым защитным проводником металлических нетоковедущих частей, которые могут оказаться под напряжением (ГОСТ 12.1.009-76).
Зануление является сейчас основным средством обеспечения электробезопасности. Зануление применяется в трехфазной сети с заземленной нейтралью напряжением до 1000 В. Обычно это сети 220/127, 380/220, 660/380 В. В таких сетях нейтраль источника тока (генератора или трансформатора) присоединена к заземлителю с помощью заземляющего проводника. Этот заземлитель располагается вблизи источника питания или (в отдельных случаях) около стены здания, в котором он находится.
В сети с занулением нужно различать нулевой защитный проводник (НЗ) и нулевой рабочий проводник (НР). Нулевым защитным проводником называется проводник, соединяющий зануляемые части с заземленной нейтральной точкой обмотки источника тока или ее эквивалентом. Нулевой рабочий проводник используют для питания током электроприемников и тоже соединяют с заземленной нейтралью трансформатора или генератора (рис. 32).
Защита человека от поражения электрическим током в сетях с занулением осуществляется тем, что при замыкании одной из фаз на зануленный корпус в цепи этой фазы возникает ток короткого замыкания, который воздействует на токовую за-
Рис. 32. Принципиальная схема зануления в трехфазной сети с нулевым рабочим (НР) и нулевым защитным (НЗ) проводниками:
1 — корпус однофазного приемника тока; 2 — корпус трехфазного приемника тока; 3 — плавкий предохранитель; Iк — ток однофазного короткого замыкания; Ф — фазный провод; Uф — фазное напряжение
щиту (плавкий предохранитель, автомат), в результате чего происходит отключение аварийного участка от цепи. Кроме того, еще до срабатывания защиты ток короткого замыкания вызывает перераспределение напряжений в сети, приводящее к снижению напряжения корпуса относительно земли. Таким образом, зануление уменьшает напряжение прикосновения и ограничивает время, в течение которого человек, прикоснувшийся к корпусу,
может попасть под действие напряжения. У однофазных электроприемников (светильников, ручного электроинструмента и др.), которые включаются между фазным и нулевым рабочим проводами, зануление корпусов надлежит выполнять с помощью отдельного (третьего) проводника, который должен соединять корпус электроприемника с нулевым защитным проводом (рис. 33, а, б). В таких случаях присоединять корпуса электроприемников для обеспечения электробезопасности к нулевому рабочему проводу нельзя, так как при его разрыве (перегорании предохранителя) все подсоединенные к нему корпуса окажутся под фазным напряжением относительно земли.
Рис. 33. Зануление однофазного электроприемника, включенного между фазным и нулевым рабочим проводами:
а — правильно; б — неправильно
В сети с занулением нельзя применять заземление отдельных электроприемников, не присоединив их прежде к нулевому защитному проводнику. В противном случае при замыкании фазы на заземленный, но не присоединенный к нулевому защитному проводу корпус образуется цепь тока через заземление этого корпуса и заземление нейтрали источника тока. Такой случай представляет опасность, так как средства защиты
не смогут отключить такой электроприемник из-за малого значения тока и поэтому опасное напряжение на всех корпусах может сохраняться длительное время, пока заземленный приемник не будет отключен вручную.
Важно отметить, что если зануленный корпус одновременно заземлен, то это только улучшает условий безопасности, так как обеспечивает дополнительное заземление нулевого защитного провода.
Защитным отключением называется быстродействующая защита, обеспечивающая автоматическое отключение электроустановки при возникновении в ней опасности поражения током (ГОСТ 12.1.009-76).
Принцип защиты человека в этом случае заключается в ограничении времени протекания через тело человека опасного тока. Устройство защитного отключения (У30) постоянно контролирует сеть и при изменении ее параметров, вызванном подключением человека в сеть, отключает сеть или ее участок. Все УЗО состоят из датчика, преобразователя и исполнительного органа. Существуют УЗО, реагирующие на ток нулевой последовательности (на несимметрию фазных токов утечки), на напряжение нулевой последовательности (на несимметрию напряжений фаз относительно земли); на токи и напряжения оперативных источников питания; на напряжение корпуса электроустановки относительно земли (рис. 34).
Организационные и технические мероприятия по обеспечению
электробезопасности заключаются в основном в соответствующем обучении, инструктаже и допуске к работе с электроустановками лиц, прошедших медицинское
освидетельствование; выполнении ряда технических мер при проведении работ с отключением напряжения в действующих электроустановках или вблизи них (запирание приводов, снятие предохранителей, отсоединение концов питающих линий; установка ограждений и знаков безопасности; наложение заземлений и т. п.); соблюдении особых требований при работах на токоведущих частях, находящихся под напряжением, или вблизи них (выполнение работ по наряду не менее чем двумя лица
ми, организация надзора за проведением работ, применение электрозащитных средств и т. п.).
Рис. 34. Принципиальная схема устройств защитного отключения (УЗО), реагирующего на напряжение корпуса относительно земли:
1 — корпус; 2 - автоматический выключатель; КО — отключающая катушка; Н — реле напряжения максимальное; R3 — сопротивление защитного заземления; Rв— сопротивление вспомогательного заземления