Физика полупроводников. Лекция 2

Глава II. Элементы зонной теории твердых тел.

§1. Энергетический спектр изолированных атомов.

Изолированные атомы представляют собой динамическую систему, состоящую из неподвижного ядра и вращающихся вокруг него электронов. Ирншоу доказал, что система точечных неподвижных зарядов находящихся, на конечных расстояниях друг от друга не является устойчивой системой, т.е. их потенциальная энергия не может иметь минимум, а атомы представляют собой устойчивую систему, следовательно, согласно теоремы Ирншоу они являются динамическими системами. Полная энергия атома равна clip_image002, T – кинетическая энергия электронов, U – потенциальная энергия взаимодействия электронов с ядром и друг с другом. Для определенности рассмотрим атом с простейшей архитектурой – атом водорода (H), у него вокруг протона +1e вращается электрон –1e.

clip_image004, clip_image006; r – расстояние от электрона до центра ядра, U – имеет сферическую симметрию. Если clip_image008, clip_image010, то движение электрона e является связанным. Если clip_image012, clip_image014, то движение электрона e является свободным. Видно, что clip_image016, clip_image018.

clip_image019Точную характеристику о состояниях электронов в атомах можно получить с помощью квантовой механики, учитывающую волновые свойства частиц. Состояния электронов в атомах можно описывать с помощью волновой функции, удовлетворяющей уравнению Шредингера clip_image021. Однако в общем случае решение уравнения Шредингера это сложная задача, она легче решается для стационарных условиях электрона. Стационарная задача не описывает процессы, она описывает структуру системы в которой могут протекать процессы.

Полную волновую функцию электрона атома водорода в стационарном состоянии можно представить в виде произведения:

clip_image023 (1)

clip_image025 - полная энергия электрона в n состоянии.

Амплитудная часть волновой функции clip_image027 должна удовлетворять стационарному уравнению Шредингера:

clip_image029 (2)

clip_image031 (3)

clip_image033 (4)

clip_image035, n = 1,2,3… (5)

Из (4) следует, что атом водорода имеет дискретный спектр энергий, промежуточное состояние электрон принимать не может.

clip_image037. Состояние с такой энергией называется основным состоянием. В этом состоянии атом имеет максимальную устойчивость. А состояния с энергиями clip_image039, clip_image041 называются возбужденными.

clip_image043 - энергия ионизации водорода.

Соотношение (5) определяет энергию электрона в связанном состоянии, как видно эта энергия квантуется. Дискретность энергии связанного электрона является следствием проявления его волновых свойств. Движения такого электрона схожи со стоячей волной. Стоячая волна – это волна, получающаяся в результате интерференций двух одинаковых волн распространяющихся в противоположных направлениях. В связанном состоянии электронная волна распространяется в ограниченном объеме (в объеме атома). Как известно в этом случае стоячие волны могут иметь только определенное значение длин волн clip_image045, clip_image047.

Из последнего соотношения следует, что λ стоячих электромагнитных волн принимает ряд дискретных значений и следовательно, и энергия связанного электрона принимает ряд дискретных значений.

Движение свободного электрона можно описывать бегущей волной, распространяющейся в неограниченном пространстве, а бегущая волна может принимать любое значение λ, следовательно, энергия свободного электрона не квантуется.

Если электрон переходит из основного состояния clip_image049 в возбужденное clip_image051, то он поглощает энергию: clip_image053. Если электрон переходит из возбужденного состояния в основное, он испускает квант энергии clip_image055.

Состояние электрона в атоме водорода с энергией clip_image057 имеет кратность вырождения равной 2n2, n – основное квантовое число. Под кратностью вырождения следует понимать число различных состояний при данном значении энергии clip_image025[1]. Для электрона атома водорода, энергия зависит только от основного квантового числа n, следовательно, вырождение будет определяться числом различных значений орбитального (l), магнитного (m) и спинового (s) квантовых чисел.

В многоэлектронном атоме потенциальная энергия атома определяется не только взаимодействием электронов с ядром, но и взаимодействием друг с другом. В связи с этим энергия электронов зависит от дух квантовых чисел (n, l). Кратность вырождения состояния clip_image060 будет определяться числом различных квантовых чисел m и s. При данном квантовом числе l, кратность вырождения 2(2l+1).

You are here: Главная Физика Физика полупроводников Физика полупроводников. Лекция 2